Appendix C Project Calculations and Analyses

OU 1-10 Group 3, EDF LOG

EDF-096-001 TSF Excavation Quantities Calculations EDF-096-002 Waste Stream Quantities	
EDF-096-003 Crane Lifting Calculations	
EDF-096-006 Waste Contents Density Evaluation	
EDF-096-008 Brokk 330D Specification Sheet	
EDF-096-009 RUBB Building Systems Specifications and Vendor Quote	s
EDF-096-010 Excavation Quantities Calculations	
EDF-096-011 Radiological Modeling Calculations	
EDF-096-012 PM-2A Haff Tank Rigging	
EDF-096-012A TSF-26 PM2A Half-Tank Lifting Lugs Design	
EDF-096-013 PM-2A Half Tank Cover	
EDF-096-014 PM-2A Half Tank Positive Air Flow System	
EDF-096-016 Project Stormwater/Drainage Design	
EDF-096-017 PM-2A Tank Excavation Slope Stability	
EDF-096-018 Knockdown Hopper Frame Design	
EDF-096-019 ICDF Landfill WAC Evaluation	
EDF-096-021 PM-2A Tank Cutting System	
EDF-096-022 PM-2A Tank Packaging System	
EDF-096-023 PM-2A Half-Tank Cover Supports	

EDF 096-001

Rev. No. 0

Page 1 of 4

EDF Title: TSF	-26 Exc	AVATION QUANTITIES CAI		
Project No.: 2000	-096		Project Title: OU 1-10, TSF-20	6 REMEDIATION
Project Specific A	ect Specific Activity: EXCAVATION QUANTITIES CALCULATIONS **Mem Statement:** Iculate the Excavation and Fill Quantities for the PM-2A Tanks Site - TSF-26 (V-13 [East Tank] and V-14 [West Tank]) edial Action Operations. Includes the following breakdown of material types: Excavated "Clean Materials" [No Radiological Contamination above Established Limits] - Stockpiled at Site Excavated "Contaminated Materials" [Radiological Contamination above Established Limits] - Disposed of at ICDF Required Imported Engineering Backfill Materials			
<u>Problem Stateme</u>				
Remedial Action of Excavate Excavate Required	Operations d "Clean I d "Contan	 Includes the following breakdow Materials" [No Radiological Continuated Materials" [Radiological Engineering Backfill Materials 	own of material types: tamination above Established I	Limits] - Stockpiled at Site
Summary of Con	clusions:			
Excavate	d "Contan Engineeri	ninated Materials" => 13,4	302 cubic yards 164 cubic yards 404 cubic yards 103 cubic yards	
REVIEW AND APP	ROVAL SIG	SNATURES:		,
	R/A	TYPED NAME/ORGANIZATION	SIGNATURE	DATE
PREPARED BY:		D. J. Kenoyer	Smilet & Kenny	2.60.13
CHECKED BY:		KEVIN SHABER	The Sales	10/20/03
INDEPENDENT				
REVIEWER APPROVAL:	-	GARY MECHAN	Jan Dalu	1 10/21/03
		CARY 1-(ECAMO	- Carpentin	
Distribution:				•
Registered Profe	ssional En	gineer's Stamp (if required)		
			.*	
	٠	•		

EDF Title: TSF-26 EXCAVATION QUANTITIES CALCULATIONS

Project No.: 2000-096

Project Title: OU 1-10, TSF-26 REMEDIATION

Prepared by: D.J. Kenoyer

Date: 15-Jul-03 Checked by:

EDF No.

096-001/

Rev. No.: Page 0 2 of 4

Date:

PROBLEM STATEMENT:

TSF-26 Site Remediation Operations require the removal of overburden above the PM2A Tanks [V-13 (East Tank) and V-14 (West Tank)] and concrete cradle system. The excavation must be sized sufficiently large to allow all remedial operational activities to be performed including:

- Demolition of Tanks themselves
- Placement of Containment Structures
- Placement of Waste Removal Equipment
- Equipment and Personnel Access

ASSUMPTIONS:

The assumptions utilized in the performance of these calculations are outlined below:

- Soil Classification Allows the Utilization of 1:1 Side Slope due to Soil Cohesion and Stability [Conclusion from soil sampling radiological survey data accomplished in May 2003 by BBWI]
- General PM2A Site within the Fenced Perimeter was Previously Excavated to a depth approximately 5'0" below "Surrounding Grade" [Excavation to existing surface elevation to spring line of tanks approximately 16'0"]
- Only 3.0% of the PM2A Mass Excavation considered "Contaminated" and must be packaged in Roll-Off
 Containers with "Burrito Bag Liners" [Conclusion from soil sampling radiological survey data accomplished in May 2003 by BBWI]
- Compaction Factor of 7.0% was utilized in calculating the cubic yards of Engineered Backfill Materials needed to be imported from TAN Pit [located North of SMC]
- Compaction Factor of 5.0% was utilized in calculating the cubic yards of Topsoil Materials needed to be imported from TAN Pit [located North of SMC]

REFERENCES:

CALCULATIONS / ANALYSIS:

See Attached Excel Spreadsheet Calculations based upon PM2A Site Physical Configuration and above stated considerations for excavation sizing development.

Tanks

INEEL BBWI RFP-394 RD/RA Work Plan for WAG 1-10 ==> PM2A Tanks - Excavation Quantities Calculations WAG 1-10 Sites TSF-26, TSF-03, and WRRTF-01

Additional Breakdown of Quantities.	26-Jun-03. prepar	et by DJ Ken	10yer, Checked	by					
Checked 90% Design - 26-Jun-53, D.	Kessyer-Verified	by Shann Dr	usajti						
Assumed Average Depth of Excavate	ti Arca from PMZA	Sice ==>			5.0				
No Gravel Park required for Cruse / S									
East Section of PM2A (PM2A)		_		-					
Description	width (lineal feet)	length	depth	Area (square feet)	volume (cubic feet)	(cubic yards)			
Mass Backfill - Total Area	144.0	100.8	5.0	49 C40 A	129 240 0	5 130 A		70/	Compaction
	144.0	192.0	5.0 3.0	27,648.0	138,240.0 \$2,944.0	5,120.0 3,072.0		3,287.0	
Mass Backfill - Total Area Crane Lifting Platform - Gravel	144.0 60.0	192.0 70.0	3.0	27,648.0 4,20 0. 0	97*34 4 *0	3,072.0	Gravel	3,28/30	MILL
Mass Backfill - Engineered Mat		70.0	•	23,448.0	138,240.C	5,120.0	Backfill	5,478.4	
					-	5,120.0	Dackini	257₹₩.7	
West Section of PM2A (PM2A	Excavation Wes	stern Edge	to West Site	Boundary Fend	5e)				
Description	width	length	depth	Area	voiume				
	(lineal feet)			(square feet)	(cubic feet)	(cubic yards)			
Mass Backfill - Area 1	84.0	216.0	5.0	18,144.0	90,720.0	3,360.0		7%	Compaction
Mass Backfill - Area 1	84.0	216.0	3.0	18,144.0	54,432.0	2.016.0		2,157.1	L utFill
Mass Backfill - Area 2	36.0	90.0	5.0	3,240.0	16,200.0	600.0			
Mass Backfill - Area 2	36 .0	90.0	3.0	3,240.0	9,720.0	360.0		36 0. 0	IntFill
				21,384.0	106,920.0	3,960.0			
Crane Lifting Platform - Gravel		70.0	•	4,200.0	107.000.0	20000	Gravel	4 227 2	
Mass Backfill - Engineered Mai	teriais			17,184.0	106,920.0	3,960.0	Backfill	4,237.2	
Main Excavation Section of PA	M2A (PM2A Ext	cavation)							
Description	width	length	depth	Asea	volume	6 45 to)			
1.11.	(lineal feet)		4 .	(Square feet)	(cubic feet)	(cubic paras)			
Mass Backfill - Area 1	114.0	120.0	5.0	13,680.0	68,400.0	2,533.3		7%	Compaction
Mass Backfill - Area 2	54.0	78.0	5.0	4,212.0	21,060.0	780.0			
Mass Backfill - Area 3	24.0	30.0	5.0	720.0	3,600.0	133.3			
				18,612.0	93,060.0	3,446.7	Backfill	3,687.9	
PM2A Main Area - Within Site	Roudary Fence	•							
Description	width	length	depth	Area	volume				
Aller Aller	(linaul feet)			(square feet)	(cubic feet)	(cubic yards)		. 654	
Topsoil - Area 1 - North Section	130.0	357.0	0.5	46,410.0	23,205.0	859.4			Compaction
Topsoil - Area 2 - South Section		153.5	0.5	10,361.3	5,180.6	191.9			• –
-				56,771.3	28,385.6	1,051.3	Topsoil	1,103.9	
							Gravel		cubic yards
							CHEART		PROTE TAKES
							Backfill	13 403 5	cubic varde
							Backfill Topsoil	-	cubic yards
							Beckfill Topsoil	-	cubic yards cubic yards
	w- 41							-	
Checked 90% Design - 26-Jun-B.; D.I		by Sharn Da	S.LVIII:					-	
No Lucrim Backfill Operations - Stoc	kpiting ONLY	by Shavn Da	stán:					-	
No linerim Backfill Operations - Stoci Excavtion Spoils Pile Con	kpiling ONLY of iguration			4vas	uolis es a			-	-
No Interior Backfill Operations - Stoc	kpiling ONLY ofiguration pe width (lineal feet)	by Sinon De length	siin depth	Area (square feet)	volume (cubic feet)	(cubic yards;	Topsoil	1,103.9	cubic yards
No laurim Backfill Operations - Stoc. Excavtion Spoils Pile Con. Description Slop	kpilling ONLY offguration pe width (lineal feet)	length	depth	(square feet)	volume (cubic feet)	(cubic yards)	Topsoil	-	cubic yards
No linerius Backfill Operations - Stoc. Excavition Spoils Pile Con Description Slop Excavation Spoils Pile No. 1 -	kpiling ONLY offguration pe width (lineal feet) Located in Sout	length	depth	(square feet)		(cubic yards)	Topsoil	1,103.9	cubic yards
No lucrim Backfill Operations - Stoc Excavition Spoils Pile Cor Description Stop Excavation Spoils Pile No. 1 - - Bottom	kpiting ONLY nfiguration pe width fineal feet) Located in Sout 75.0	length thwestern 140.0	depth	(square feet) 10,500.0		(cubic yards)	Topsoil	1,103.9	cubic yards
No laterine Backfill Operations - Stoc Excavition Spoils Pile Cor Description Slop Excavation Spoils Pile No. 1 - - Bottom - Top	kpiting ONLY infiguration pe width (lineal feet) Located in Sout 75.0 1.0 35.0	length	depth	10,500.0 3,500.0	(cubic feet)	a Turk Jest (1966)	Topsoil	1,103.9	cubic yards
No lucrim Backfill Operations - Stoc Excavition Spoils Pile Cor Description Stop Excavation Spoils Pile No. 1 - - Bottom	kpiting ONLY infiguration pe width (lineal feet) Located in Sout 75.0 1.0 35.0	length thwestern 140.0	depth	(square feet) 10,500.0		(cubic yards) 5,185.2	Topsoil	1,103.9	cubic yards
No Interim Backfill Operations - Stoc. Excavition Spoils Pile Con Description Slop Excavation Spoils Pile No. 1 Bottom - Top 1:1 sh	Apiting OFILY infiguration be width (lineal feet) Located in Sout 75.0 1.0 35.0 opes	length thwestern 140.0 100.0	depth Corner 20.0	10,500.0 3,500.0 7,000.0	(cubic feet) 140,000.0	a Turk Jest (1966)	Topsoil	1,103.9	cubic yards
No laterine Backfill Operations - Stoc Excavition Spoils Pile Cor Description Slop Excavation Spoils Pile No. 1 - - Bottom - Top	Apiting OFILY infiguration be width (lineal feet) Located in Sout 75.0 1.0 35.0 opes	length thwestern 140.0 100.0	depth Corner 20.0	10,500.0 3,500.0 7,000.0	(cubic feet) 140,000.0	a Turk Jest (1966)	Topsoil	1,103.9	cubic yards
No laterian Backfill Operations - Stoc. Excavition Spoils Pile Cor. Description Stop Excavation Spoils Pile No. 1 - - Bottom - Top i:1 sb Excavation Spoils Pile No. 1 - Loc. - Bottom	cated in Southweet	length thwestern (140.0 100.0	depth Corner 20.0	(square feet) 10,500.0 3,500.0 7,000.0	(cubic feet) 140,000.0	a Turk Jest (1966)	Topsoil	1,103.9	cubic yards
No laterian Backfill Operations - Stoc. Excavition Spoils Pile Cor. Description Stop Excavation Spoils Pile No. 1 - - Bottom - Top i:1 sb Excavation Spoils Pile No. 1 - Loc. - Bottom	kpiling ONLY Ifiguration pe width (lineal feet) 75.0 1.0 35.0 opes cated in Southwee 75.0 1.0 57.0	length thwestern (140.0 100.0 stern Corne 140.8	depth Corner 20.0	(square feet) 10,500.0 3,500.0 7,000.0 int Fitt 3'0" of W	(cubic feet) 140,000.0	a Turk Jest (1966)	Topsoil	1,103.9	cubic yards
No Interim Backfill Operations - Stor. Excavition Spoils Pile Cor. Description Slop Excavation Spoils Pile No. 1 - Bottom - Top 1:1 sb Excavation Spoils Pile No. 1 - Loc. Bottom - Top	kpiling ONLY Ifiguration pe width (lineal feet) 75.0 1.0 35.0 opes cated in Southwee 75.0 1.0 57.0	length thwestern (140.0 100.0 stern Corne 140.8	depth depth depth corner 20.0 er - After finit	(square feet) 10,500.0 3,500.0 7,000.0 int Fitt 3'0" of W 10,500.0 6,954.0	(cubic feet) 140,000.0 Vestern Area	5,185.2	Topsoil	1,103.9	cubic yards Stockpile 1
No tnerim Backfill Operations - Stoc Excavition Spoils Pile Cor Description Stoj Excavation Spoils Pile No. 1 - - Bottom - Top	Appliance Appliance	length thwestern 140.0 100.0 stern Corne 140.0 122.0	depth Corner 20.0 er - After Init	(aguare fiee) 10,500.0 3,500.0 7,000.0 int Fitt 3'0" of W 10,500.0 6,954.0 E,727.0	(cubic feet) 140,000.0 Vestern Area	5,185.2	Topsoil	1,103.9 5,185.2 2,517.1	cubic yards Stockpile 1
No tnearing Backfill Operations - Stoc. Excavation Spoils Pile Cor. Description Stop Excavation Spoils Pile No. 1 - Bottom Top 1:1 sk Excavation Spoils Pile No. 1 - Loc. - Bottom Top 1:1 sk Excavation Spoils Pile No. 2 - Bottom	kpiling ONLY Ifiguration pe width (lineal feet) 75.0 1.0 35.0 opes cated in Southwee 75.0 1.0 57.0 cpes Located in Norr 60.0	length thwestern 140.0 100.0 stern Corne 140.0 122.0 theastern 6	depth Corner 20.0 er - After Init	(aquare feet) 10,500.0 3,500.0 7,000.0 int Fatt 3'0" of W 10,500.0 6,954.0 E,727.0	(cubic feet) 140,000.0 Vestern Area	5,185.2	Topsoil	1,103.9 5,185.2 2,517.1	cubic yards Stockpile 1
No tnearin Backfill Operations - Stoc Excavation Spoils Pile Cor Description Stop Excavation Spoils Pile No. 1 - - Bottom - Top 1:1 sh Excavation Spoils Pile No. 1 - Loc - Bottom - Top 1:1 sh Excavation Spoils Pile No. 2 - - Bottom - Bott	Appliance Appliance	length thwestern 140.0 100.0 stern Corne 140.0 122.0	depth Corner 20.0 er - After Init	(aquaze feet) 10,500.0 3,500.0 7,000.0 int Fatt 3*a** of W 10,560.0 6,954.0 E,727.0 6,000.0 6,000.0	(cubic feet) 140,000.0 Vestern Area	5,185.2	Topsoil	1,103.9 5,185.2 2,517.1	cubic yards Stockpile - 1 Interim Fill 3'0" Western Area
No tnearing Backfill Operations - Stoc. Excavation Spoils Pile Cor. Description Stop Excavation Spoils Pile No. 1 - Bottom Top 1:1 sk Excavation Spoils Pile No. 1 - Loc. - Bottom Top 1:1 sk Excavation Spoils Pile No. 2 - Bottom	kpiling ONLY Ifiguration pe width (lineal feet) 75.0 1.0 35.0 opes cated in Southwee 75.0 1.0 57.0 cpes Located in Norr 60.0	length thwestern 140.0 100.0 stern Corne 140.0 122.0 theastern 6	depth Corner 20.0 er - After Init	(aquare feet) 10,500.0 3,500.0 7,000.0 int Fatt 3'0" of W 10,500.0 6,954.0 E,727.0	(cubic feet) 140,000.0 Vestern Area	5,185.2	Topsoil	5,185.2 2,517.1 2,948.5	Stockpile 1 Interim Fill 3'0" Western Area Stockpile 2
No tracerim Backfill Operations - Stoc. Excavition Spoils Pile Cor. Description Stop Excavation Spoils Pile No. 1 - Bottom - Top 2:1 sk Excavation Spoils Pile No. 1 - Loc Bottom - Top 1:1 sk Excavation Spoils Pile No. 2 - Bottom	kpiling ONLY Ifiguration pe width (lineal feet) 75.0 1.0 35.0 opes cated in Southwee 75.0 1.0 57.0 cpes Located in Norr 60.0	length thwestern 140.0 100.0 stern Corne 140.0 122.0 theastern 6	depth Corner 20.0 er - After Init	(aquaze feet) 10,500.0 3,500.0 7,000.0 int Fatt 3*a** of W 10,560.0 6,954.0 E,727.0 6,000.0 6,000.0	(cubic feet) 140,000.0 Vestern Area 78,543.0	5,185.2 2,909.0	Topsoil	5,185.2 2,517.1 2,948.5	cubic yards Stockpile - 1 Interim Fill 3'0" Western Area
No tnearing Backfill Operations - Stoc. Excavation Spoils Pile Cor. Description Stop Excavation Spoils Pile No. 1 - Bottom Top 1:1 sk Excavation Spoils Pile No. 1 - Loc. - Bottom Top 1:1 sk Excavation Spoils Pile No. 2 - Bottom	kpiling ONLY Ifiguration pe width (lineal feet) 75.0 1.0 35.0 opes cated in Southwee 75.0 1.0 57.0 cpes Located in Norr 60.0	length thwestern 140.0 100.0 stern Corne 140.0 122.0 theastern 6	depth Corner 20.0 er - After Init	(aquaze feet) 10,500.0 3,500.0 7,000.0 int Fatt 3*a** of W 10,560.0 6,954.0 E,727.0 6,000.0 6,000.0	(cubic feet) 140,000.0 Vestern Area 78,543.0	5,185.2	Topsoil	5,185.2 2,517.1 2,948.5	Stockpile 1 Interim Fill 3'0" Western Area Stockpile 2
No tnearing Backfill Operations - Stoc. Excavation Spoils Pile Cor. Description Stop Excavation Spoils Pile No. 1 - Bottom Top 1:1 sk Excavation Spoils Pile No. 1 - Loc. - Bottom Top 1:1 sk Excavation Spoils Pile No. 2 - Bottom	kpiling ONLY Ifiguration pe width (lineal feet) 75.0 1.0 35.0 opes cated in Southwee 75.0 1.0 57.0 cpes Located in Norr 60.0	length thwestern 140.0 100.0 stern Corne 140.0 122.0 theastern 6	depth Corner 20.0 er - After Init	(aquaze feed) 10,500.0 3,500.0 7,000.0 int Fatt 3*a** of W 10,560.0 6,954.0 E,727.0 6,000.0 6,000.0	(cubic feet) 140,000.0 Vestern Area 78,543.0	5,185.2 2,909.0	Topsoil	5,185.2 2,517.1 2,948.5	Stockpile 1 Interim Fill 3'0" Western Area Stockpile 2
No theering Backfill Operations - Stoc Excavition Spoils Pile Cor Description Stop Excavation Spoils Pile No. 1 - Bostom - Top 1:1 sh Excavation Spoils Pile No. 1 - Loc - Bostom - Top 1:1 sh Excavation Spoils Pile No. 2 - Bostom - Top Excavation Spoils Pile No. 2 - Bostom - Top Additional Breakdown of Quantities,	kpiling ONLY **Ifiguration **per violation **Checkled in South **T5.0 1.0 35.0 opes **cated in Southween **75.0 1.0 57.0 cpes **Located in Norr 60.0 1.0 60.0	length 140.0 100.0 stern Corne 140.0 122.0 theastern 6 100.0	depth 20.0 er - After finite 9.0 Corner -	10,500.0 3,500.0 7,000.0 int Fitt 3'0" of W 10,500.0 6,954.0 E,727.0 6,000.0 6,000.0	(cubic feet) 140,000.0 Vestern Area 78,543.0	5,185.2 2,909.0	Topsoil	5,185.2 2,517.1 2,948.5	Stockpile 1 Interim Fill 3'0" Western Area Stockpile 2
No Inerim Backfill Operations - Stoc Excavition Spoils Pile Cor Description Stop Excavition Spoils Pile No. 1 - - Bottom - Top 1:1 sh Excavation Spoils Pile No. 1 - Loc - Bottom - Top 1:1 sh Excavation Spoils Pile No. 2 - - Bottom - Top Additional Breakdown of Quantities, Checked 90% Design - 17-May - 03. 13.	kpiling ONLY Ifiguration ge width (lineal fee) Located in Southwee 75.0 1.0 35.0 opes cated in Southwee 75.0 1.0 57.0 cpes Located in Non 60.0 1.0 60.0	length 140.0 100.0 stern Corne 140.6 122.0 theastern t 100.0 this stern to the stern to the stern t 100.0 the stern to the stern t 100.0 the stern t 100.0 the stern t 100.0 the stern t 100.0	depth 20.0 20.0 25. Corner finic 9.5 Corner -	10,500.0 3,500.0 7,000.0 10,500.0 10,500.0 6,954.0 E,727.0 6,000.0 6,000.0	(cubic feet) 140,000.0 /estern Area 78,543.0	5,185.2 2,909.0	Topsoil	5,185.2 2,517.1 2,948.5	Stockpile 1 Interim Fill 3'0" Western Area Stockpile 2
No theering Backfill Operations - Stoc Excavition Spoils Pile Cor Description Stop Excavation Spoils Pile No. 1 - Bostom - Top 1:1 sh Excavation Spoils Pile No. 1 - Loc - Bostom - Top 1:1 sh Excavation Spoils Pile No. 2 - Bostom - Top Excavation Spoils Pile No. 2 - Bostom - Top Additional Breakdown of Quantities,	kpiling ONLY Ifiguration ge width (lineal fee) Located in Southwee 75.0 1.0 35.0 opes cated in Southwee 75.0 1.0 57.0 cpes Located in Non 60.0 1.0 60.0	length 140.0 100.0 stern Corne 140.6 122.0 theastern t 100.0 this stern to the stern to the stern t 100.0 the stern to the stern t 100.0 the stern t 100.0 the stern t 100.0 the stern t 100.0	depth 20.0 20.0 25. Corner finic 9.5 Corner -	10,500.0 3,500.0 7,000.0 10,500.0 10,500.0 6,954.0 E,727.0 6,000.0 6,000.0	(cubic feet) 140,000.0 /estern Area 78,543.0	5,185.2 2,909.0	Topsoil	5,185.2 2,517.1 2,948.5	Stockpile 1 Interim Fill 3'0" Western Area Stockpile 2
No Inerim Backfill Operations - Stoc Excavition Spoils Pile Cor Description Stop Excavition Spoils Pile No. 1 - - Bottom - Top 1:1 sh Excavation Spoils Pile No. 1 - Loc - Bottom - Top 1:1 sh Excavation Spoils Pile No. 2 - - Bottom - Top Additional Breakdown of Quantities, Checked 90% Design - 17-May - 03. 13.	kpiling ONLY **Ifiguration** **prepared in South **T5.0 1.0 35.0 opes cated in Southwee 75.0 1.0 57.0 cpes **Located in Norr 60.0 1.0 60.0 1.0 1.0 1.0 1.0 1	length 140.0 100.0 stern Corne 140.6 122.0 theastern t 100.0 this stern to the stern to the stern t 100.0 the stern to the stern t 100.0 the stern t 100.0 the stern t 100.0 the stern t 100.0	depth 20.0 20.0 25. Corner finic 9.5 Corner -	10,500.0 3,500.0 7,000.0 10,500.0 10,500.0 6,954.0 E,727.0 6,000.0 6,000.0	(cubic feet) 140,000.0 /estern Area 78,543.0	5,185.2 2,909.0	Topsoil	5,185.2 2,517.1 2,948.5	Stockpile 1 Interim Fill 3'0" Western Area Stockpile 2
No Interim Backfill Operations - Stoc. Excavition Spoils Pile Cor. Description Stop Excavation Spoils Pile No. 1 - Bottom - Top 1:1 sh Excavation Spoils Pile No. 1 - Loc. Bottom - Top 1:1 sh Excavation Spoils Pile No. 2 - Bottom - Top Additional Breakdown of Quantities, Checked 90% Design - 17-May-03. 13. Matheaut 1,921 Side Shopes Hotiles	kpiling ONLY Ifiguration ge width (lineal feet) Located in Southwee 75.0 1.0 35.0 opes cated in Southwee 75.0 1.0 57.0 cpes Located in Norr 60.0 1.0 60.0 1.5-Mar-II3. prepara I Southweer, Verified in Southweer, Verified in Southween I Southween 1.0 60.0	length 140.0 100.0 stern Corne 140.6 122.0 theastern t 100.0 this stern to the stern to the stern t 100.0 the stern to the stern t 100.0 the stern t 100.0 the stern t 100.0 the stern t 100.0	depth 20.0 20.0 25. Corner finic 9.5 Corner -	10,500.0 3,500.0 7,000.0 10,500.0 6,954.0 E.727.0 6,000.0 6,000.0 6,000.0	(cubic feet) 140,000.0 Vestern Area 78,543.0 Ph	5,185.2 2,909.0 - 12A Tank Excava	Topsoil	5,185.2 2,517.1 2,948.5	Stockpile 1 Interim Fill 3'0" Western Area Stockpile 2
No Interim Backfill Operations - Stoc Excavition Spoils Pile Cor Description Stoj Excavition Spoils Pile No. 1 - - Bottom - Top 1:1 sh Excavation Spoils Pile No. 1 - Loc - Bottom - Top 1:1 sh Excavation Spoils Pile No. 2 - - Bottom - Top Additional Breakdown of Quantities, Checked 90% Deign - 17-May-03, 13. Main Excavation with 1.0:1 Side Shopes Until Main Excavation with 1.0:1 Side Shopes Unit	kpiling ONLY Ifiguration ge width (lineal feet) Located in Southwee 75.0 1.0 35.0 opes cated in Southwee 75.0 1.0 57.0 cpes Located in Norr 60.0 1.0 60.0 1.5-Mar-03, prepara 3 Kenoyer, Verified it Soils Geologic Da	length 140.0 100.0 stern Corne 140.0 122.0 theastern (100.0 100.0 theastern (100.0	depth 20.0 er - After Init 9.0 Corner - corner - Reviewed, and i	10,500.0 3,500.0 7,000.0 10,500.0 10,500.0 6,954.0 6,000.0 6,000.0 6,000.0	(cubic feet) 140,000.0 Vestern Area 78,543.0 Ph	5,185.2 2,909.0	Topsoil	5,185.2 2,517.1 2,948.5 5,185.2 5,465.6	Stockpile - 1 Interim Fill 3'0" Western Area Stockpile 2 Stockpile Totals
No Interim Backfill Operations - Stoc Excavition Spoils Pile Cor Description Stoj Excavition Spoils Pile No. 1 - - Bottom - Top 1:1 sh Excavation Spoils Pile No. 1 - Loc - Bottom - Top 1:1 sh Excavation Spoils Pile No. 2 - - Bottom - Top Additional Breakdown of Quantities, Checked 90% Deign - 17-May-03, 13. Main Excavation with 1.0:1 Side Shopes Until Main Excavation with 1.0:1 Side Shopes Unit	kpiling ONLY Ifiguration ge width (lineal feet) Located in Southwee 75.0 1.0 35.0 opes cated in Southwee 75.0 1.0 57.0 cpes Located in Norr 60.0 1.0 60.0 1.5-Mar-II3. prepara I Southweer, Verified in Southweer, Verified in Southween I Southween 1.0 60.0	length 140.0 100.0 stern Corne 140.0 122.0 theastern (100.0 100.0 theastern (100.0	depth 20.0 er - After Init 9.0 Corner - corner - Reviewed, and i	10,500.0 3,500.0 7,000.0 10,500.0 6,954.0 E.727.0 6,000.0 6,000.0 6,000.0	(cubic feet) 140,000.0 Vestern Area 78,543.0 Ph	5,185.2 2,909.0 - 12A Tank Excava	Topsoil	5,185.2 2,517.1 2,948.5	Stockpile - 1 Interim Fill 3'0" Western Area Stockpile 2 Stockpile Totals
No Interim Backfill Operations - Stoc Excavition Spoils Pile Cor Description Stop Excavition Spoils Pile No. 1 - - Bottom - Top 1:1 sh Excavation Spoils Pile No. 1 - Loc - Bottom - Top 1:1 sh Excavation Spoils Pile No. 2 - - Bottom - Top Additional Breakdown of Quantities, Checked 90% Design - 17-May-03. 12 - Maintain 1.9:1 Side Shopes Unit Main Excavation with 1.0:1 Si Description Slop	kpiling ONLY Ifiguration ge width (lineal feet) Located in Southwee 75.0 1.0 35.0 opes cated in Southwee 75.0 1.0 57.0 cpes Located in Norr 60.0 1.0 60.0 1.5-Mar-II3. prepara I Southweer, Verified in Southweer, Verified in Southween I Southween 1.0 60.0	length 140.0 100.0 stern Corne 140.0 122.0 theastern (100.0 100.0 theastern (100.0	depth 20.0 er - After Init 9.0 Corner - corner - Reviewed, and i	10,500.0 3,500.0 7,000.0 10,500.0 6,954.0 E.727.0 6,000.0 6,000.0 6,000.0	(cubic feet) 140,000.0 Vestern Area 78,543.0 Ph	5,185.2 2,909.0 - 12A Tank Excava	Topsoil	5,185.2 2,517.1 2,948.5 5,185.2 5,465.6	Stockpile - 1 Interim Fill 3'0" Western Area Stockpile 2 Stockpile Totals
No toerine Backfill Operations - Stoc Excavition Spoils Pile Cor Description Stop Excavition Spoils Pile No. 1 - - Bottom - Top 1:1 sh Excavation Spoils Pile No. 1 - Loc - Bottom - Top 1:1 sh Excavation Spoils Pile No. 2 - - Bottom - Top Additional Breakdown of Quantities, Checked 90% Design - 17-May-03. D. - Maintrain 1.0:1 Side Stopes Unit Main Excavation with 1.0:1 Si Description Stop Main Tank Excavation - Bottom - Bottom	kpiling ONLY Ifiguration pe width (lineal feet) 1.0 35.0 opes cated in Southwee 75.0 1.0 57.0 cpes Located in Northwee 60.0 1.0 60.0 1.5-Mar-ll3, prepare 1 Scinoyer, Verified 1 Soils Geologic Date the Slopes pe width (lineal feet)	length thwestern (140.0 100.0 100.0 stern Corne 140.0 122.0 theastern (100.0 100.0 ed by D3 Ken thy Shaun Di ta Received, 1	depth 20.0 er - After Init 9_C Corner - - corner - depth depth	(aquare feet) 10,500.0 3,500.0 7,000.0 int Fitt 3"0" of W 10,560.0 6,954.0 E,727.0 6,000.0 6,000.0 6,000.0 by Engineering Analy Area (square feet)	(cubic feet) 140,000.0 Vestern Area 78,543.0 Ph	5,185.2 2,909.E - 12A Tank Excava (cubic yards)	Topsoil	5,185.2 2,517.1 2,948.5 5,185.2 5,465.6	Stockpile - 1 Interim Fill 3'0" Western Area Stockpile 2 Stockpile Totals
No toerine Backfill Operations - Stoc Excavition Spoils Pile Cor Description Stop Excavition Spoils Pile No. 1 - - Bottom - Top 1:1 sh Excavation Spoils Pile No. 1 - Loc - Bottom - Top 1:1 sh Excavation Spoils Pile No. 2 - - Bottom - Top Additional Breakdown of Quantities, Checked 90% Design - 17-May-03. B. - Maintrain 1.9:1 Star Stopes Unit Main Excavation with 1.0:1 St Description Stop Main Tank Excavation - - Bottom -	Apiling ONLY Ifiguration ge width (lineal fee) Located in Southwee 75.0 1.0 35.0 opes cated in Southwee 75.0 1.0 57.0 cated in Northwee 1.0 57.0 cated in Northwee 1.0 60.0 1.0 60.0 1.5 Mar-III. prepara Remoyer, Verified It Soits Geologic Dail ide Siopes width (lineal fee) 59.0	length 140.0 100.0 stern Corne 140.6 122.0 theastern t 100.0 100.0 the stern t 100.0 theastern t 100.0	depth 20.0 er - After Init 9.0 Corner - corner - Reviewed, and i	(aquare feet) 10,500.0 3,500.0 7,000.0 ial Fail 3'd" of W 10,500.0 6,954.0 E,727.0 6,000.0 6,000.0 6,000.0 by Engineering Analy Area (square feet) 5,015.0	(cubic feet) 140,000.0 Vestern Area 78,543.0 Ph	5,185.2 2,909.0 - 12A Tank Excava	Topsoil	5,185.2 2,517.1 2,948.5 5,185.2 5,465.6	Stockpile - 1 Interim Fill 3'0" Western Area Stockpile 2 Stockpile Totals

(21.1) (271.1)

(6,749.5) (570.2)

Ramp										
- Bottom		12.0	96.0		1,152.0)				
- Top	1.00	39.9	96.0		3,833.0)				
·				16.0	2,492.5	5 19,940.1	738.5	_		
						=	5,108.0	=		
				Soil Expan	sion Factor ===>	7.0%	357.6			
		Minimu	n Required	l Import fo	r Engineering M	faterials ===>	5,465.6	Backfill	5,465	5.6 cubic yards
North Addison to a	5 4 11						્રાજીક છ	ray Valid		
								Gravel		odene juras
								Backfill	18,869	
								Topsoil	1,103	3.9 cubic yards
Waste Boxes for Contain	ated Soil R	lemoval O	perations							
	height	width	length	capa city		cubic feet	cubic yards			
Standard Steel Box	4.0	4.0	6.0	10,000	1bs	96.0	3.6			
Fabric Soil Sacks	6.0	6.0	10.0	25,000	l'os	360.0	13.3			
Roll-Off Container Liner:	3.5	7.2	22.0		lbs	551.3	20.4			
		Excavate	ed Soil & F	reviously	Excavated Soil '	Volume ===>	5,108.0	cubic yard	5	
Waste Expansion Fa	actor ===>	7.0%	E:	stimated Ex	kpanded Waste	Volume>	5,465.6	cubic yard:	3	
Assumed Percentage of PM2A Se	di Excavatio	en of Radio	logically Co	entantinate	d Soils					
				Assumed.	Percemage ===:	> 3.0%	164.0	cubic yard	is	
										8 each - Rolloff Containers Staged Required
,										5 each - Rolloff Containers Staged in NE Corner
										·
					Steel Boxes Re		1,540	each		67 each
	Cost for S					he INEEL ===>		each		00 each
			Estimated	Cost for S	teel Waste Cont	ainers ==>	8 847,000		\$ 36,8	50
					rd Soil Sacks Re		410	each		18 each
						he INEEL ===> _!		each		00 each
		E	stimated C	ost for Fal	ric Waste Cont	ainers -> .	123,000		\$ 5,4	0 0
			6 60		## C To		270	each		12 each
					ff Containers Re	ne DVEEL ->> ;		each	s -	
									-	00 each
						he INEEL ==>_		each		
		Estimated	Cost for E	toil-Off W	aste Container	Liners ==> :	67,500		3,0	UQ
		Cost	for Standar	d Roll-Off	Container - REN	TAL Fees ===> !		per week	\$ -	per week
					ff Container - RE		270	each		12 each
		Esti			Off Waste Cont			•	\$ -	
					Off Waste Cont				3,0	00
		T300malea	1000 C03	r Jos won-	OD WASE CORE	memers	. 01,300		2,10	••

Notes

I per the EGG-2236 FINAL Report D&D of TAN PM-2A System, Murch 1983 / Figure 2-7. Arrangement of PM-2A holding tank manway

	en Statement: Callate the Waste Stream Quantities for the PM-2A Tand V-14 [West Tank]) Remedial Action Operation MLLW - Soil [Contaminated Soils] MLLW - Debris [Contaminated Piping, Metals, PPEs, MLLW - Sludge / DE Waste [Waste from Tanks V-13 MLLW - Liquid [Decontamination Water from Sampli MLLW - Debris [PM2A Tanks] MLLW - Debris [Decontamination of Support Equipment of Conclusions: MLLW - Soil		rage ror.
EDF Title: TSF-26	WASTE STREAM QUANTITIES	CALCULATIONS	
Project No.: 2000-09		Project Title: OU 1-10, TSF-26	REMEDIATION
Project Specific Activ	vity: Waste Stream Quantity Calc	CULATIONS	
roblem Statement:			
`ank] and V-14 [Wes	t Tank]) Remedial Action Operations. [Contaminated Soils] ris [Contaminated Piping, Metals, PPEs, Rage / DE Waste [Waste from Tanks V-13 & did [Decontamination Water from Sampling ris [PM2A Tanks]	Includes the following breakdown ags, Other Disposable Items, etc.] vV-14] g and Equipment Decontamination C	wn of Waste types: Operations]
Summary of Conclus	sions:		
 MLLW - Soil MLLW - Debr MLLW - Sludg MLLW - Liqu MLLW - Debr 	is => 393 cubic feet ge / DE Waste => 6,020 gallons / 80 id => 375 gallons is [PM2A Tanks] => 165 cubic feet M		MUM
LEVIEW AND APPROV	AL SIGNATURES:		
	R/A. Typed Name/Organization	SIGNATURE	DATE
REPARED BY:	TO THE PARTY OF TH	A. Max	2 Ct. 18
CHECKED BY:	KEVIN SHABER	Muchalin	10/20/0-3
NDEPENDENT REVIEWER	102		
APPROVAL	GARY MECHAM	Juny Talah	(0/21/03
Distribution:		<u> </u>	
Registered Profession	ial Engineer's Stamp (if required)		
			•
		•	

EDF Title: TSF-26 WASTE STREAM QUANTITIES CALCULATIONS

Project No.: 2000-096

Project Title: OU 1-10, TSF-26 REMEDIATION

Prepared by: D.J. Kenoyer

Date: 17-Oct-03 Checked by: Kevin Shaber

EDF No. 096-00 Rev. No.:

2

Page 2 of 5

Date:18-Oct-03

PROBLEM STATEMENT:

TSF-26 Site Remediation Operations require the removal of the waste lines feeding and the residual waste in the PM2A Tanks [V-13 (East Tank) and V-14 (West Tank)]. The waste would include the materials generated during Field Sampling and Equipment Decontamination Operations.

Another Issue is the Volume of the PM2A Tanks themselves and their "Disposal" at the ICDF.

A change from previous Revision 1 of this EDF is the additional removal of the Waste Piping under Snake Avenue.

Another change from previous Revision 1 of this EDF is the deletion of the Waste Debris and Water from the Decontamination efforts associated with the Concrete Cradle Sampling Operations.

Another change from previous Revision 1 of this EDF is the addition of the Waste Debris from the Decontamination efforts associated with the Support Equipment and Ancillary Systems - RUBB Enclosures, Vacuum System, etc.

ASSUMPTIONS:

The Assumptions utilized in the performance of these calculations are outlined below:

- Only 3.0% of the PM2A Mass Excavation is considered "Contaminated" and must be packaged in Roll-Off Containers with "Burrito Bag Liners" [Conclusion from soil sampling radiological survey data accomplished in May 2003 by BBWI]
- PM2A Tank Volumes based upon values sited in EGG-2236 FINAL Report D&D of TAN PM-2A System, March 1983 / Figure 2-9
- Sampling and Equipment Decontamination Waste Debris and Decon Water generation rates based upon previous D&D Engineering Experience and are stated in attached Excel Spreadsheets

REFERENCES:

EGG-2236 FINAL Report D&D of TAN PM-2A System, March 1983 / Figure 2-9

CALCULATIONS / ANALYSIS:

See Attached Excel Spreadsheet Calculations based upon PM2A Site Physical Configuration and above stated considerations for waste quantity development.

NEEL BBWI RFP-394 RD/RA Work Plan for WAG 1-10 ==> PM2A Tanks - Waste Quantities Calculations WAG 1-10 Sites TSF-26, TSF-03, and WRRTF-01 Waste Management Plan - "DRAFT" FINAL Design

Checked 90% Design - 17-Muy-03, DJ Kenoyer, Verified by Lynn Higgins Checked 100% Design - 15-Jun-03, DJ Kenoyer, Verified by Lynn Higgins

Updated 100% Design - 23-Jul-03. DJ Kenoyer, PM2A Tank Volumes - Verified by Lynn Higgins

Updated "DRAFT" FINAL Design - 16-Oct-03, DJ Kenoyer, PM2A Tank Volumes - Verified by Lynn Higgins

Table 3-1. Waste stream summary for the PM2A Tanks

Remedial Action Activity	Waste Description	Location	Expected Type an Applicable Wast Codes	e Estimated Volume	Planned DOT Class Packaging	Storage Location	Planned Treatment/Disposal
Excavate soil above and	Soil	PM2A Tanks AOC	MLLW		Class 7 LSA	CERCLA WSA	Assume waste meets LDRs
around the tanks			F001	164 cubic yards	Soil bags in roll-off		no treatment required ICDF
Contaminated Soil	each	width	length	depth	containers volume (cubic feet)	volume (cubic yards)	
M2A Tank Excavation Area				35 16			
M2A Tank Ramp	1			17 96 16	125,296	4,640.6	
	each			96 exposed	19,940	738.5	
M2A Tanks M2A Tank Manhole Access	2 2		55 12			(21.1)	=
			S	oil Expansion Factor>	137 ,9 16 7.0%	5,108.0 357.6	_
Assumed	Percentage of PM2A So	oil Excavation of Radiolo	gically Contaminated	Soils		5,465.6	-
			- '	Assumed Percentage ==>	3.0%	164.0	
emove and size associated M2A Tanks [V-13, V-14]	Empty Waste Tanks	PM2A Tanks AOC	MLLW	165 cubic feet	Class 7 LSA	CERCLA WSA	Assume waste meets LDR no treatment required
			F001	MINIMUM Volume	18 ounce Vinyl Laminate - Yellow		ICDF
Waste Lines	each	diameter (feet)	length	thickness (inches)	volume (cubic faet)		Half Tank Volumes
13 / V-14 iscellaneous Items -	2	12.5	55			Total Tank Volume	6,749.5
einforcing Ribs, Hatchways,					944.9	7.0%	472.4
42A Tank Manhole Access	2	5.5	16	.0	760.3	Total PM2A Tank Manhole Access	380.1
					15,204.2	MAXIMUM Volume	7.602.
				30%	4,561.3	Typical Volume Reduction - Waste Minimization	2,280.6
-13 / V-14	. 2	12.50	55.0	0.1875	71.3	Total Tank Material Volume - MINIMUM Volume	
iscellaneous Items - inforcing Ribs, Hatchways,					5.0	7.0%	I
: 42A Tank Manhole Access	2	3.50	16.6	n a 1350	4.3	Total Manhole Access	
	4	5.50	16.0	0.1250	82.6	Material Volume - MINIMUM Volume MINIMUM Volume	
				100%	165 2	Typical Waste Minimization Volume	
emove and size associated	Empty piping	PM2A Tanks AOC	MLLW		Class 7 LSA	CERCLA WSA	Assume waste meets LDR
aste lines; verify lines are apty			F001	39 cubic feet	Metal drums/boxes		no treatment required ICDF
Waste Lines	each	diameter (inches)	lengtli		or wooden waste volume (cubic feet)		
13 (East Tank / Tk-710) ain Waste Line from TAN-	1	4	11	Depuiso Tank	9.8	Not Added in Subtotals	Previously
13 Under Sanke Avenue &	1		ŝ	15 25'0" Snake Ave / 10'0" to "T" Flange	3.1		
13 Fill Lines from PM2A 13 Fill Vent Line	.3 1			10 · 15	2.6 2.9		
-14 (West Tank / Tk-709)	1		13	To Snake Avenue Phys			
lain Waste Line from TAN- -14 Under Snake Avenue & I''	1	. 4	:	25'0" Snake Ave / 10'0" to "T" Flange	3.1		
-14 Fill Lines from PM2A -14 Fill Vent Line	3 1			10 15	2.6 2.9		
	·	Ü		· -	39.1	=	and the second second
move tank contents	Sludge and diatomaceous earth	Inside PM-2A Tanks	MLLW	6,020 gallons	Class 7A, Type A	CERCLA WSA	Assume waste meets LDR no treatment required
TPM2A Tank Contents	Cl. 4	depth (inches) (h)	F001 length	diameter	Metal drums/boxes volume (cubic feet)		ICDF
-13 (East Tank / Tk-710) Vaste Depth	Sludge 6" Brown Sludge / 6" Black Sludge / 12"	<i>uepm (inches) (n)</i> 24.00		12.5 12.5		2A System, March 198	AL Report D&D of TAN PM- 3 / Figure 2-9. Liquid and
-	Liquid					Sludge Depths in PM-2	A Tanks, measured in 1981

Distomaceous Earth ADDED	o" Brown Studge / 0" Black Sludge / 1.5" Timbel S number of bags	13.50 85.85 pounds per bag	55 A ==> pounds per cubic font	12.5 787.02	300.6	2,997	gallons removed - EGG-2236 page 22	
EGG-2235, page 22	196				213.0			
V-14 (West Tans / Tk-709)	4" Sludge / 18" Liquid	22.00	55	t2.5	613.7			
Waste Deoth			_	1,606,77				
	s ==> =" Shudge / I" Liquid	10£.13 5.00	A===> £5	1,606,77 2.5	59.0			
	- printing a turious	53,85	A ==>	- 180.67				
Diagonaceous Earth ADDED	number of bugs	pounds per bug	pounds per cubic-foot					
EGG-2236, page 22	204	50.0	46.0		221.7		gallons per cubic foot	
					804,4		gallons	
Decontaminate Support	Debris (e.g., PPE,	PM2A Tanks AOC	MLLW		Class 7 LSA	CERCLA WSA	Assume waste meets LDRs; no treatment	
Equipment and Ancillary	tools, rags, etc.)						required	
Systems - RUBB			F001	539 cubic feet	Metal drums/boxes		ICDF	
Structures, HEPAs, hoses.			rum		or wooden waste			
erc.					boxes			
Support Equipment and An	eillare Sestems	days	cubic feet per unit	units	cubic feet			
Decas Debris	, .,	,						
PPEs - 4 FTE Decon Crew with	. * Changenurs per day -	á	4.5	S	180.0			
Large RUBB Enclosure	a catalgorius pin on;							
Rags and Other Disposable Leu		4	1.0	4				
PPEs - 4 FTE Decon Crew with	2 Changeouts per day -	2	4,5	Ł	73.0			
Small RUBB Enclosure Rags and Other Disposable here	ne	7	1.0	4	8.0			
PPEs -4 FTE Decon Crew with		2	4.5	\$	72.0			
Vacuum System Egrapmen								
Rags and Other Disposable hear		2	1.0 2.0	4				
Remove HEPA Filters and Roug		2'0" x 2'0" x 0'6"	2.0	4	8.0 8.0			
Remove HEPA Filters and Roas		2'0' x 2'0" x 0'6"	0.1	100				
Remove HEPA Hoses - 4" diam Site Cleanup - Plastic Taro Bern			150.0	100	150.0			
Decembranian Tools - Brish			2,0	4	S.0	-		
					538,7	•		
Decontaminate Excavation	Debris (e.g., PPE.	PM2A Tanks AOC	MLLW		Class 7 LSA	CERCLA WSA	Assume waste meets LDRs;	
Equipment	tools, rags, etc.)			354 cubic feet			no treatment required	
			F001		Metal drams/boxes		ICDF	
					or wooden waste			
Excavation Equipment Dec	on Debris	days	cubic feet per unit	units	cubic feet			
PPEs - 4 FTE Decon Crew with		5	4.5	8	180.0			
Raps and Other Discossible Item		4	1.0	4	16.0 150.0			
Site Cleanup - Plastic Tarp Berr Decentamination Tools - Brush			150.0 2.0	4	\$.0			
Decommentmental 10012 - DIESO	es. Chiscis, Gr.,			,	354,0	•		
Decontaminate excavation	Decon water	PM2A Tanks AOC	MLLW		Class 7 LSA	CERCLA WSA	Absorb/solidify free liquid	
and vacuum equipment		(designated decon	F001	200	Metal drums		Assume waste meets LDRs;	
• •		area)		375 galions			no treatment required	
							ICDF	
Equipment		days	galions per unit	units	gullons			
PPEs - 4 FTE Decon Crew with	2 Changeouts ner day	4		8				
Rags and Other Disposable Item		4	-	4				
Equipment - Equipment Washe	d with High Pressure							
Low Volume Sprayer - Collecte			25.0	15	375.0			
(Bermed Area lined with Plastic	Tarn - Collected into				375.0	•		
				393				

AOC area of contamination

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

DOT Department of Transportation

ICDF INEEL CERCLA Disposal Facility

LDR land disposal restrictions

LSA low specific activity

MLLW mixed low-level waste

PPE personal protective equipment

WSA waste storage area

This volume includes residual waste removed during decontamination of the tank interiors.

Table 3-2. Waste stream summary for TSF-	ible 3-2.	Waste stream	summary	for TSF-	03
--	-----------	--------------	---------	----------	----

			Expected T			Planned DO		•	301 ·
Remedial Action Activity	Waste Description	Location	Applicable Code	s	Estimated Volume			Storage Location	Planned Treatment/Disposal
Excavate burn pit area	Soil	TSF-03 AOC	Non-hazard			Class 7 LSA	ich mad i	CERCLA WSA	Assume waste meets LDR:
Estavate built pit alea	3011	131-03 ACC	Normand	745		Class / LSA		CERCLA WAA	no treatment required
			Pb, dioxins/i	urans.	804 cubic yards	Soil bags in	oll-off		ICDF
			PCBs, chron			containers			
Contaminated Soil	each	width	lengt	H	depth	volume (cub	ic feet)	volume (cubic yards)	
Burn Pit			26	64	ç		14,976	554.7	
Bottom Intrusion Side Intrusion - Sides	3	,	26 J	64 64	11		3,328 1,408	123.3 52.1	
Side Intrusion - Ends			1	26	11		572	21.7	
			•			<u></u>	20.284	751,3	•
				Waste :	Expansion Factor ====	>	7.0%		=
Comple and within the	Dalada (a. a. DDC	TOT: 51 4 00	N11-			Ct 7 I E 4		8.608	
Sample soil within the excavation	Debris (e.g., PPE, tools, rags, etc.)	TSF-03 AOC	Non-hazardo	us		Class 7 LSA		CERCLA WSA	Assume waste meets LDR
TWORASTION .	wors, rags, etc.)		Pb, dioxins/f	irenec	192 cubic feet	Metal drums/	hover		no treatment required
			PCBs, chron			or wooden w			ICDI
Sampling Debris		days	cubic feet p		units	cubic fe			
PPEs - 4 FTE Sampling Crew v	áth 2 Changeous ner		4	4.5	<u></u>		144.0		
Rags and Other Disposable Item			4	1.0	4		16.0		
Sampling Tools			4	2.0	4		32.0		
							192.0	-	
Sample soil within the	Decon water	TSF-D3 AOC	Non-hazardo	TPC		Class 7 LSA		CERCLA WSA	Absorb/solidify from liquid
excavation	Decon water	131-03 ACC	Pb, dioxins/f			Metal drums		CERCLA WBA	Absorb/solidify free liquid Assume waste meets LDRs
			PCBs, chrom		32 gallons	Metal utulus			
			r CDS, CHIOM	ITULI					no treatment required ICDF
Sampling		days	galions per	unit	units	galions			Ю
PPEs - 4 FTE Sampling Crew w	ith 2 Changeouts per		4		8	-	_		
Rags and Other Disposable Item	s		4	-	4		_		
Sampling Tools - Tools Rinsed					•				
from Spray Bottle - Collected in 5-Gallon Plastic Bucket)	Wash Water Container		4	2.0	4		32.0		
3-Ganon Prastic Bucketi							32.0	:	
							22.0		
Decontaminate Excavation	Debris (e.g., PPE.	TSF-03 AOC	Non-hazardo	រេទ		Class 7 LSA		CERCLA WSA	Assume waste meets LDRs
Equipment	toois, rags. etc.)				354 cubic feet				no treatment required
			Pb, diexms/f			Metal drums/			ICDF
The second of the second			PCBs, chrom		**	or wooden wa			
Excavation Equipment Deci		days	cubic feet pe	r unti	units	cubic fe			
PPEs - 4 FTE Sampling Crew w			5	4.5	8		180.0		
Rags and Other Disposable Item Site Cleanup - Plastic Tarp Bern			4	1.0 150.0	4		16.0 150.0		
Decontamination Tools - Brushe				2.0	4		8.0		
							354.0		
Dannaminate T	D	THE 03 / 02	N			GI G T G :		ampar 4 mas	
Decontaminate Excavation Equipment	Decon water	TSF-03 AOC	Non-hazardo			Class 7 LSA		CERCLA WSA	Absorb/solidify free liquid
ederbinent		(designated decon			250 gallons	Metal drums			Assume waste meets LDRs
		area)	PCBs, chrom	ıum					no treatment required ICDF
Egstipment		days	galions per	unit	units	gallons	,		10171
PPEs - 4 FTE Sampling Crew w	ith 2 Changeause em	****	4		8	C			
Rags and Other Disposable Item			4	-	4		-		
Equipment - Equipment Washed	with High Pressure								
Low Volume Sprayer - Collecte	d in Wash Off Area			25.0	10		250.0		
Bermed Area lined with Plastic									

AOC area of contamination

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

DOT Department of Transportation
ICDF INEEL CERCLA Disposal Facility

LDR land disposal restriction

LSA low specific activity

Pb lead

PCB polychiorinated biphenyl

PPE personal protective equipment

WSA waste storage area

EDF 096-003
Rev. No. 4
Page 1 of 12

				Page	1 of 12
EDF Title: TS	F-26 CR	ANE LIFTING CALCULATION	ONS		
Project No.: 201	00-096		Project Title: OU 1-10, TSF-2	6 REMEDIATION	
Project Specific	Activity: C	RANE LIFTING CALCULATIONS			
Problem Statem	ient:				
Calculate the visit of the second of the sec	weights asso date the spen in Operation Tank Half [12 THA Shelter "C" Shape Sl crane to be conclusions: te: Tank Half -Weight Special - Weight Special - Weight "C" Shape - "	cified crane lifting capacities to s. Includes the following break 2'6" diameter x 55'0" length] [26.2' width x 65.0' length] / RUB nielding Concrete [9'10" Sides x 13 utilized is a GROVE GMK5246 [26.2] width x 65.0' length] / RUB nielding Concrete [9'10" Sides x 13 utilized is a GROVE GMK5246 [27.2] width x 65.0' length] / RUB nielding Concrete [9'10" Sides x 13 utilized is a GROVE GMK5246 [28.2] width x 65.0' length] / RUB nielding Concrete [9'10" Sides x 13 utilized is a GROVE GMK5246 [29.2] width x 65.0' length] / RUB nielding Concrete [9'10" Sides x 13 utilized is a GROVE GMK5246 [29.2] width x 65.0' length] / RUB nielding Concrete [9'10" Sides x 13 utilized is a GROVE GMK5246 [29.3] width x 65.0' length] / RUB nielding Concrete [9'10" Sides x 13 utilized is a GROVE GMK5246 [29.3] width x 65.0' length] / RUB nielding Concrete [9'10" Sides x 13 utilized is a GROVE GMK5246 [29.3] width x 65.0' length] / RUB nielding Concrete [9'10" Sides x 13 utilized is a GROVE GMK5246 [29.3] width x 65.0' length] / RUB nielding Concrete [9'10" Sides x 13 utilized is a GROVE GMK5246 [29.3] width x 65.0' length] / RUB nielding Concrete [9'10" Sides x 13 utilized is a GROVE GMK5246 [29.3] width x 65.0' length] / RUB nielding Concrete [9'10" Sides x 13 utilized is a GROVE GMK5246 [29.3] width x 65.0' length] / RUB nielding Concrete [9'10" Sides x 13 utilized is a GROVE GMK5246 [29.3] width x 65.0' length] / RUB nielding Concrete [9'10" Sides x 13 utilized is a GROVE GMK5246 [29.3] width x 65.0' length] / RUB nielding Concrete [9'10" Sides x 13 utilized is a GROVE GMK5246 [29.3] width x 65.0' length] / RUB nielding Concrete [9'10" Sides x 13 utilized is a GROVE GMK5246 [29.3] width x 65.0' length] / RUB nielding Concrete [9'10" Sides x 13 utilized is a GROVE GMK5246 [29.3] width x 65.0' length] / RUB nielding Concrete [9'10" Sides x 13 utilized is a GROVE GMK5246 [29.3] width x 65.0' length] / RUB nielding Concrete [9'10" Sides x 13 utilized is a GROVE GMK5246 [29.3] width x 65.0' length] / RUB nielding Conc	B Special Shelter [16'0" width x 35'10" End x 6'0" Depth x 0'9" Thic process of the state of the	and lifting plans dur '0" length] kness] aulic Crane] or equa e access hatch, 4 steel tan [1] [-13 tank, V-14 tank, a] The V-13 and V-14	ring the al ak reinforcing ribs and RUBB tanks would be
would require a "I would require the The GROVE TN Halves since reach GMK5240 to stay	Lift Plan" sin removal and M9120 [INEE n restrictions at TAN and	ce the lift does not exceed 80% of trelocation of the existing West Over the country of the coun	and would be at 63.1% of the crane as the crane lift capacity. This crane as the PM2A Sit crane; could be utilized at the ICDI a positioned next to the transport trace.	ccess to both sides of te. F to "Off-Load" the PA	the excavation M2A Tank
REVIEW AND A	PPROVAL SI	GNATURES:			
	R/A	TYPED NAME/ORGANIZATION	SIGNATURE	DA	ATE
PREPARED BY:		D. J. Kenoyer	March Williams	B- Book	
CHECKED BY:	: :	K.M. SHABER	Mullelan	- 12/3/67	5
INDEPENDENT					
REVIEWER					
Approval:		GARY MECHAN	Frey Thelat	12/3/03	
Distribution:					
Registered Prof	essional En	gineer's Stamp (if required)			·

EDF Title: TSF-26 CRANE LIFTING CALCULATIONS

Project No.: 2000-096

Project Title: OU 1-10, TSF-26 REMEDIATION

Prepared by: D.J. Kenoyer

Date: 02-Dec-03 Checked by: Kevin Shaber

Rev. No.:

EDF No.

Page 2 of 12

096-003

4

Date:02-Dec-03

PROBLEM STATEMENT:

TSF-26 Site Remediation Operations require the removal of the waste PM2A Tanks [V-13 (East Tank) and V-14 (West Tank)] and the placement of a temporary enclosure structure [RUBB THA Shelter]. The weight of these items was calculated and the GROVE GMK5240 [240 ton crane] and GROVE GMK6350 [350 ton crane] Technical Manuals consulted to ensure these items could be handled during the Remedial Action Operations.

The placement / positioning of the GROVE GMK5240 and/or GMK6350 crane is critical in relationship to the edge of the excavation to ensure there is no failure of soil stability in that area.

ASSUMPTIONS:

The Assumptions utilized in the performance of these calculations are outlined below:

- Thickness of the PM2A Tank walls to be 5/8"
- Additional weight of reinforcing ribs, access hatch, and other flanges, etc. is equal to 7.0% of above weight
- Thickness of PM2A Tank Exterior TAR Coating was confirmed to be 1/16" and NOT the previously reported 1'2" to 1" thickness range.
- Lifting Capabilities of GROVE GMK5240 based upon Guide Chart
- Weight calculations of RUBB THA Shelter based upon General Specification, Subsection 1.1
- Precast "C" Shape Concrete Shielding unit weight is 145 lbs per cubic foot and the Steel Reinforcing is 4.5% of the concrete weight

REFERENCES:

GROVE GMK 5240 Lifting / Crane Capabilities Guide Chart, page 6
GROVE GMK 6350 Lifting / Crane Capabilities Guide Chart, page 7
RUBB THA Shelter General Specification, Subsection 1.1, Weight
RUBB Special Shelter, Weight Calculations from Technical Representative Teleconference
Precast "C" Shape Concrete Shielding, weight calculations from Drawing D-4

CALCULATIONS / ANALYSIS:

See Attached Excel Spreadsheet Calculations based upon PM2A Site Physical Configuration and above stated considerations for weight and crane lift capacity development.

The GROVE GMK5240 or equal could handle all lifts of the V-13 and V-14 tanks IF the crane is positioned East and West of the excavation and tanks themselves respectively such that the horizontal distance is limited to 80 feet. This positioning of the crane would result in the V-13 / V-14 tank lifts being at 63.1% of the crane lift capacity. This would require the removal and relocation of the existing overhead electrical line on the West side of the PM2A Tank Site [provides power to pumps at West Lift Station of the Sanitary Sewer Facility].

If lifts were to be completed for the V-13 / V-14 tanks only utilizing access from one side of the excavation, the GMK5240 would be performing the far lift at 92.8% of the crane capacity which is a "Critical Lift" and not advisable from equipment operability. If lifts were to be done from one side of the excavation, a larger crane, GROVE GMK6350 (350 ton) or equal could handle the far V-14 tank lift and would only at 72.7% of the crane lift capacity, a "Non-Critical Lift".

INEEL BBWI RFP-394 RD/RA Work Plan for WAG 1-10 ==> Crane Lifting / Loading Calculations WAG 1-10 Sites TSF-26, TSF-03, and WRRTF-01

INTREPID prepared Revision 0 dated - 13-Jan-2003, by DJ Kenoyer, Checked by SD Dustin

- 1 Revision 1, 24-Feb-03, by DJ Kenoyer
- 2 Revision 2, 15-Jul-03, by DJ Kenayer
- 3 100% Rev 1, 28-Jul-03, by DJ Kenoyer / Changed Tank Thickness to be MORE Conservative to 1/4" from 3/16"
- 4 Draft FINAL, 29-Sep-03 by DJ Kenoyer / Changed Tank Thickness from 1/4" to the 1/2" found during September 2003 Tank Sampling efforts by BBWI
- 5 07-Nov-03 by DJ Kenoyer / Tank Exterior Tar Coating Thickness from 1/2" to 1" found during September 2003 Tank Sampling efforts by BBWI
- 6 20-Nov-03 by DJ Kenoyer / Tank Exterior Tar Coating Thickness 1/16" confirmed by BBWI ==> NOT 1/2" to 1" as reported earlier
- 7 01-Dec-#3 by DJ Kenoyer / Tank Sweet thickness 5/8" confirmed by BBWI ===> NOT 1/2" as reported earlier [Revision 4]

Original Configuration

							We	eight		
Description	diameter (lìneal feet)	length	depth	Area (square feet)	Thickness (inches)	Unit (lbs/sf)	Tank (lbs)	Added (lbs)	Total (lbs)	Half-PM2A (lbs)
Weight Calculations										
7		CON	FIRMED	Thickness ===>	5/8	25.60	61.575	4.310	65,885	32,943 7
7 Specific Weight of "TAR"	72 lbs per cubic t	foot		•	0.06	0.38	902	63	965	483 6
								Revised We	ight ===>	33,425 7&6
					1/2	20.40	49,068	3,435	52,502	26,251 4
Specific Weight of "TAR"	72 lbs per cubic	foot			0.06	0.38	902	63	965	483 6
										26,734 4&6
PM2A Tank	12.5	55.0		2,405.3	3/8	15.30	36,801	2,576	39,377	19,688
					5/16	12.80	30,788	2,155	32,943	16,471
Assume Tank Ribs and Manways ==	==> 7.0%	Added We	ight		1/4	10.20	24,534	1,717	26,251	13,126 3
					3/16	7.65	18,400	1,288	19,688	9,844
					1/8	5.10	12,267	859	13,126	6,563
							We	ig <i>ht</i>		
Description	width	length	height	Length	Width	Unit	THA	Added	Total	
		(lineal feet)		(lineal feet)	(lineal feet)	(lbs/lf)	(lbs)	(lbs)	(lbs)	
2 Weight Calculations for RUBI	THA Shelter	rifuttor, u	in disajai		Mary Allery III	144	(r.27) : 1		1 Date 14	And the Control

Description	width (lineal feet)	length (lineal feet)	height (lineal feet)	Length (lineal feet)	Width (lineal feet)	Unit (lbs/lf)	THA (lbs)	Added (lbs)	Total (lbs)
THE STATE OF	(Milen Jecy								
2 Weight Calculations for RUBI							(1.000		
THA 8 Meter	26.2	65.0		40.0	26.2		5,050		5,050
				25.0		71.00	•	1,775	1,775
		Percentage	Contingency for .	Added Weigh	t Associated w	ith Lifting S	System =>	5.0%	350
									7,175
2 Weight Calculations for RUBE	3 Special Shelt	er							•
THA 22'0" Walls	16.0	35.0		35.0	16.0	8.0	4,480		4,500
		Percentage (Contingency for	Added Weigh	t Associated w	ith Lifting S	ystem =>	5.0%	230
						-			4,730

							Wei	ight	
Description		width	length	thickness	Volume	Unit	Precast	Added	Total
Service of the contract	200			(lineal feet)	(cubic feet)	(lbs/cf)	(Ibs)	(lbs)	(lbs)
2 Weight Calculations for Pr	recast "(" Section	ı Shielding	Concrete					
Sides	2	6.0	9.8	0.75	87.8	145.0	12,724		12,724
End	1	6.0	13.8	0.75	62.2	145.0	9,024		9,024
				Per	centage Contingency f	or Added Steel Rein	forcing ==>	4.5%	980
								-	22 728

Technical Specifications for Grove Mobile Hydraulic Crane GMK5240 [240 ton crane]

rane] Whole Tank Half Tank
52,502 26,251
26,734 4 & 6
(lbs) (lbs)
Percent Lift Capacity

99.1% 49.5%
116.7% 58.3%
145.8% 72.9%

Boom Extension Boo	m Distance	Boom Angle	Lift Capacity	
(b-lineal feet) (h-li		(degrees)	(lbs)	
ing to the second of the second	na Kumayakkan	ara Ale Peri	in the property of the contract of the contrac	
105.0	80.0	40.4	53,000	
105.0	90.0	31.0	45,000	
121.0	100.0	34.3	36,000	
136.0	110.0	36.0	32,200	
151.0	126.0	37.4	24,800	

Distance from C/L Crane to C/L of Load ===> (h-lineal feet)

4	TANK	Steel	Plating	Thickness	REPORTED	to	be	1/2"
---	------	-------	---------	-----------	----------	----	----	------

TO BE THE PERSON A SMETTING TIES	OMICO LUI	OKCI DE IO	00 1/2		
Grove GMK5240 - Hydraulic	Truck Crane	240	ton		
Gross Vehicle Weight	133,900	pounds		•	=
Maximum Counterweights	154,300	pounds			
Outrigger Status - Extensions	100%	27'3" Spread			
Crane Rotation Status	360	degrees			R

	Horizontal Distat	ice - Crane to Tank	Lift Capacity	Percent Louding
V-13 East Tai	k 80.0 h-lim	eal feet	53,000	49.5% 4
	90.0 h-line	al feet	45,000	58.3% 4
V-14 West Tar	ik 100.0 h-line	al feet	36,000	72.9% 4
RUBB THA 26.2' x 6:	.0' 110.0 h-line	al feet 7,175	32,200	22.3% 4
Precast "C" Shape	110.0 h-line	eal feet 22,728	32,200	70.6%

Long High Capacity Trailers Available =>> 2003 Fontaine Specialized TDFT Telescopic Step, Drop Deel Extendable 102" wide / 48'-69' deek / 80,000 lbs capacity

6 TAR Coating Thickness CONFIRMED to be 1/16"

			Marizoniul	Distunce - Lran	e to Lank	<i>Lift Сараспу</i>	Percent Loading
V-	13	East Tank	80.0	h-lineal feet		53,000	50.4% 4 & 6
			90.0	h-lineal feet		45,000	59.4% 4 & 6
v.	14	West Tank	100.0	h-lineal feet		36,000	74.3% 4 & 6
RUBB	THA	26.2' x 65.0'	110.0	h-lineal feet	7,175	32,200	22.3%
Precast "C"	Shape	:	110.0	h-lineal feet	22,728	32,200	70.6%

Revised Cr.	ane Lift Capa	city Loading ===>
-------------	---------------	-------------------

		Horizontal Distance - Cranc to Tank			Lift Capacity	Percent Loading	
=>	V-13	East Tank	80.0	h-lineal feet		53,000	63.1% 7 & 6
			90.0	h-lineal feet		45,000	74.3% 7&6
	V-14	West Tank	100.0	h-lineal feet		36,000	92.8% 7 & 6
	RUBB THA	26.2' x 65.0	110.0	h-line al feet	7,175	32,200	22.3%
Pre	cast "C" Shape		110.0	h-lineal feet	22,728	32,200	70.6%

Technical Specifications for Grove Mobile Hydraulic Crane GMK6350 [350 ton crane]

Whole	Tank	Half	Tank

	Boom Extension	Boom Distance	Boom Angle	Lift Capacity	Office of the state of the stat	,831 s)	33,425 (lbs)	1821
		(h-lineal feet)	(degrees)	(lbs)	Per	cent Lift (Capacity	
in the sale of		TayaÇa, provide	alan singkan bar		en en elementario de la comparta el pre-	13. Tak	dirijira:	
	106.0	90.0	31.9	62,000	1	07.8%	53.9%	
	124.0	100.0	36.2	51,000	1	31.1%	65.5%	
	142.0	110.0	39.2	46,000	1	45.3%	72.7%	
	151.0	120.0	37.4	40,600	1.	64.7%	82.3%	
Distance from	C/L Crane to C/L of Load:							

Distance from C/L Crane to C/L of Load ==> (h-lineal feet)

Grove GMK6350 - Hydraulic Tr	ruck Crane 350 to	n			Horizonta	I Distance - Cra	ne to Tank	Lift Capacity	Percent Loading
Gross Vehicle Weight	158,730 pounds	18.5% Delta	V-13	East Tank	90.0	h-lineal feet		62,000	53.9% 7 & 6
Maximum Counterweights	220,400 pounds	42.8% Delta	V-14	West Tank	110.0	h-lineal feet		46,000	72.7% 7&6
Outrigger Status - Extensions	100% 28'6" Spread	61.4% Delta Total	RUBB THA	26.2' x 65.0'	110.0	h-lineal feet	7,175	46,000	15.6%
Crane Rotation Status	360 degrees	Pre	cast "C" Shape	:	110.0	h-lineal feet	22,728	46,000	49.4%

Dimensions

Note: () Reference dimensions in mm

Telef () Telefelles			
BASIC WEIGHTS (LBS.)	<u> Axles 1 - 3</u>	Axles 4 & 5	Total
With Cummins Power, 10x8x10, 20.5 R25 Tires	82,573	51,609	134,182
With Mercedes Power, 10x8x10, 20.5 R25 Tires	80,637	52,663	133,300
Additions:			
Outrigger Pads	97	212	309
Auxiliary Hoist	-(3,340)	7,066	3,726
Brackets & Hydraulic Reeling Drum for Lattice Extension	703	-(196)	507
Lattice Extension - 43/72 ft	6,969	-(1,502)	5,467
Spare Tire - 14.00 R25 (including stowage bracket)	-(395)	979	584
Spare Tire - 16.00 R25 (including stowage bracket)	-(485)	1,202	717
Spare Tire - 20.5 R25 (including stowage bracket)	-(553)	1,362	809
Removal:			
Front Outrigger Beams & Jacks	-(5,315)	730	-(4,585)
Rear Outrigger Beams & Jacks	2,992	-(8,614)	-(5,622)
Boom Assembly (minus lift cylinder)*	-(41,678)	-(3,230)	-(44,908)
Lift Cylinder*	-(3,404)	-(1,071)	-(4,475)
10x6x10 in lieu of 10x8x10	-(1,296)	436	-(860)
16.00 R25 Tires in lieu of 20.5	-(556)	-(370)	-(926)
14.00 R25 Tires in lieu of 20.5	-(1,349)	-(900)	-(2,249)

^{*}Reflects weights with superstructure facing forward

Working Range

44 - 197 ft.

[70,000]

360°

THIS CHART IS ONLY A GUIDE AND SHOULD NOT BE USED TO OPERATE THE CRANE. The individual crane's load chart, operating instructions and other instructional plates must be read and understood prior to operating the crane.

THIS CHART IS ONLY A GUIDE AND SHOULD NOT BE USED TO OPERATE THE CRANE.
The individual crane's load chart, operating instructions and other instructional plates must be read and understood prior to operating the crane.

Working range

51 - 197 ft. 36 - 6

36 - 62 ft.

220,400 lbs

100

360°

5.5 -		(100 Ton		27'11" S	produ						Pound	ds (tho	usanı	ds)						
Feet	5t*		51		3 9	87		106	Tr. 1 4 44	124			142		160		178	3		197
10	700.0† 542.D		166.0		2.0	342,0		ra. Nobel.	. A. M. IVIA	ATAK Walio	i Air	\$ 12 h	ar el	tuski Vitalia				u apa	¥*	
15 20	4120 3320	3	370.0 302.0		6,0 2.0	342,0 300.0		242.0 242.0		185.0	はでもり 】	1	39.0	11500.5	a fill	ti de de	45 K T		.g 75.	-407.
23 30	219.0	2	218.0	22	2.0	222.0	l	220.0	7	185.0)	1:	39.0	oranio e meste	106.	D	78.		***************************************	66. 0
40	185.0		85.0	16	8.0 2.0	188.0 163.0	l	187.0 161.0)	174.0 161.0)	1,	37.0 26.0	· Wisers	106 106	D iii	78J			66.0 66.0
45 50		a Mat	::::: <u>112.</u> :	12		143.0 126.0		141.0 128.0	1	144.0 128.0)	- 11	16.0 06.0	iosini.	102. 95.0)	78.4	0	1.12	66,0 66,0
55 60	Filmin.			1	3.0	113.0 102.0		116,0 105,0		114.0 103.0			1.0	it. 9	88:0 82:0)	75.0)	1d= '	66.0 66.0
85 70	STEMPEN.	la di b			4.3	92.0 85.0		95.0 86.0	ام الاستان الي والعقد الساوطات	83,0 85.0	44.00		4.0 8.D	W.	76.0 71.0		70.1 66.1		<u>1405</u>	65.0 62.0
75 80	Blueva Vilar.	.0134.1		TWEET A				79.0 72.0		77.0 70.0	SYR		3.0 7.0		66.0 62.0	uk di	62.0 58.0)	Cat. No.	59.0 56.0
	en zak	(i. Osa						67.0 62.0	di deji	10461	W.J	. 6	4.0 1.0	árdí.	58.0 54.0			LATE	CH.	52.0 49.0
95 100	11 1911	./y/::55	i H.A.			ACTI.			it ivi	-55.0		- 5	7.0		50.0		47.1		ita : ·	46.0
105				anua:		Kadii ii.		RECUES	Oliverior Oliverior	51.0 47.0		- 5		\$4,775	48.0 45.0				W. H	43.4 41.0
110 115	and was	Julius	12.15 <u>12</u>	STARK	een n	oreve ex		KEUDIN		45. D	ZP.S.	. 4	6.D 3.2		42.4 40.4		40,1 38,1		Table:	39.0 37.0
120 125	ā destarā a	gggggged	Lativisiti		eranizako		LÉBENGE		banaka	Mire e			D.6 ≨∴∖∖	s Tilosips G	38.6 37.0		36. 34.		SE.	35,2 33.6
130 135	Emberson:	national and		MITSE		and tak	487588		(47) 577.851 (A) 677.851			98.441		alki s l	34.6 33.4		32.6 31.5			32.0 30.0
140 145	16005 #NAMAL:	25 A 25 A			PASCARRION		1035338	warso		Samo	16024			dscara	32.4		30.0 28.8			27.8 26.0
150 155	ise bes	na menangga Ngga kabba	sonorumanika. Girli 1955. Tad	rani (2007) (2007)	amondenmande Needle (1886)		-1859k5580					en e					27.1 25.1	2		24.8 23.8
160 165	a conflictedados. Estres graedas o	1941/09/15100A 1941/09/09/09	aloga ang Alaga (1. Panggaran salak sa	irainistriki Uririrat	Tod s valdeliškiški John Schilderija	350,000,000,000,000 0,000,000,000,000	Siereare Ottement	errikanen. Errikanen	allenda s i Mereken	ereneral		ateralij bak Hariot vord	a s am i. Minde	amerikan Albuski	JOHN SANDER JOHN BERNES	ululuggild Setterikiri	24.4			22.6 21.8
170	en letteren in. En letteren index	inidaterii. 2. gyenne 10		trijaciji. Venemuse				regi vicilizatele Cromastorer en	unikistiki Ultura yayi sa	AMARINEN. Varibusuuvuv	enender Türkili	iau Algod www.co.		Skiedel) i. Berrenne in	ousiass. Oscaran		alla de la collación Carronneresa	PARAGONISTA BROTOTISTA		20.6
175 180	Barra (B. 1818)		a.ulga	Mediani.		JE HOUSE		antelier.	MITAUL B				1.kha		ANCERD			al Salid		19.2 17.2

51 - 197 ft.	110,200 lbs.	100%	360°					
(15,5 - 60.0 m)	(50 Tonnes) 27"	11" Spread		<u></u>	Pounds (thousand	ds)		
Feet 5	1 69	87	106	124	142	160	178	197
10 44 15 35		342.0 342.0	242.0					
20 27	2820	282:0	242,0	185.0	139,0		iki ingrisi	Michigan Proposition
25 22 30 18		224.0 183.0	224.0 182.0	185.0 182.0	139.0 139.0	106.0 106.0	78.0	66.Ď
35 14	7.0 150.0	151.0	155.0	150.0	137.0	106.0	78.0	66.0
40	128.0	1810	130.0			106.0	780	66.0
45 50	111.0 95.0	113.0 97.0	112.0 97.0	108.0 94.0	102.0 94.0	97.0 87.0	78.0 78.0	66.0 66.0
55	81.0	83.0	83.0	82.0	83.0	79.0	73.0	66,0
60	ander binde	73.0	72.0	75:0		70.0	68.0	66.0
65 70	NACES ENGINEERING SERVICE	64.0 57.0	63.0 59.0	66.0 59.0	64.0 57.0	64.0 58.0	63.0 -56.0	59.0 53.0
75		2011 S. 10110	54.0	53.0	52.0	52.0	51.0	48.0
80			48.0	4B.0		47.0	46.0	
85 90 <u>***</u> ********	Derek erregen was erregen	3087,7535; Xiro sund crasi	43.8 29.6	42.8 38.8	43.6 39.6	42.6 38.4	41.2 37.0	39.0 35.4
95	Military I. Albani, h. <u>1868) in Ph</u>		25.0	36.2	36.0	34.B	33.4	31,B
100				Contract to the second second second	32.8	31.6	30.2	
105 110	SSATTORESE PERSONAL COMPANIONER	esse server escente en entreprese	BBB NAPARAN ENGERABER (CL. 7 N. 294)	30.0 27.6	29.8 27.4	28.B 26.Z	27.4 24.8	25.6 23.2
115	Ball Indramatications	ialena karabina	allinarati pertito ()		25.0	23.8	22.6	20.8
120					23.0	21.6	20,4	18.8
125 130	POSSILAN AND TANDERS (SEE ALL)		GGC 5-43 to 10 to	ERNAL CETYARS DANKENN	PART SERVICE RANGE	19.8 18.2	18.6 16.8	16.8 15.0
135	ASSACE ENDORS AND MURINISERS	Francis (Contracting		a decembración	COSCOLO DE ROPROS PROPERTOR	16.6	15.2	13.4
140			Corpe Court and America Marche Professor (1981)			15.0	13.8	12.0
145 150 📜 😁	Sakstälky (n. 1. 1880aud 1860au 885au	s Prode Scan Assessa	igengen adgrecianes to redirection	Profesoration	unii: (1700-1804) aday (1777) (1777).		124 112	10.6 9.4
155	OB. II. EFFERENCE	CARLES TO SECURITION OF	Szeregenek észer velőfe		HENCH EIERNICH SEIN	avandiyaa 167020011163	10.0	8.2
160	Posculty (Tablica	edil tile i		Salatarak			9.0	7.0
165 170			ner en		SECTION DE LA COMPANSIONE DE		and the second	6.0 5.0
175	ster til der mit 1918 i Silvi der Licie, Zafrellic 26 1944.	rom en der extensionalis	rkova stveskia istas vi ilišči v	NAT HER BY STANDER TO THE ZELACK		neem	and the second of the second o	4.2
Lifting capacities	reater than 425,000 lbs require	additional equipmen	t,					
Note: Above chart	is available with reduced outrig	gars.						

7

A New Type of Engineering Company
501 West Broadway, Suite 200 Idaho Falls, ID 83402
(208) 529-5337

JOB	
SHEET NO.	OF
CALCULATED BY	DATE
CHECKED BY	DATE

TOTAL VOLUME: $V_{155} + V_{13} + ZV_{5} = V_{7} = 288.32 \text{ ft}^{5}$

TOTAL WEIGHT WILL BE SLIGHTLY
ADSUSTED BY THE PRESENCE OF
REINFORCING STEEL IN THE CONCRETE,
OR BY THE SPECIFIC MIX USED.
THIS IS AN APPROXIMATE WEIGHT.

> DUKENOPA 1700 B P KUI MIT

A New Type of Engineering Company
501 West Broadway, Suite 200 Idaho Falls, ID 83402
(208) 529-5337

JOB	
SHEET NO.	OF
CALCULATED BY K. SHABER	DATE 10/17/03
CHECKED BY	DATE

EDF-096-

006

Re

		-	-
e۷.	Nο.	****	_

			Page 1 of 2
EDF Title: Waste Conten	its Density Evaluation and	Vacuum Selection	
Project No.: 2000-096		Project Title: OU 1-10, Group 3	
Problem Statement: Sele	ect a vacuum extraction sy	stem to remove waste from the PN	/I-2A tanks (V-13 and V-14).
Summary of Conclusions: provide sufficient extractions tank wastes.	: A 75hp diesel engine pov on flowrate, extraction forc	vered vacuum system rated for 16 e, and nozzle velocity to extract w	" w.g. at 1500 cfm will aste sludge from the PM-2A
Review and Approval Sig	natures:		
R/A	Printed Name	Signature	Date
Prepared by:	Kesley K. Kimmell	577	14/21/3
Checked by:	KENTU SHABER	Kunkalin	10/20/07
Approval:	GAR: MECHAM	Sun Talal	10/21/63
Distribution:			
Professional Engineer's S	Stamp (if required)		

EDF Title: Waste Contents	EDF- 096-006		
Project No.: 2000-096	Rev No.:		
Project Title: OU 1-10, Gro	oup 3		Page 2 of 2
Prepared by:	Date:	Checked by:	Date:

Problem Statement:

OU 1-10 PM-2A 90% design, technical specification 13121, Vacuum System EDF-3260

Assumptions:

- 1) Distance of conveyance is 100 ft.
- 2) Flowability of tank waste is 75% of soil flowability
- 3) Moisture content will not cause bridging/jamming of solids hopper.
- 4) Extraction will be done in a homogenous manner
- 5) Extracted particles will be no larger than 1/3 the diameter of the hose (1.5" 2")

References:

- A) EDF-3260, Table B-3
- B) EDF-3260, Table B-2
- C) Multi-Vac conveying capacities vs. conveying distance curves
- D) Multi-Vac vacuum system specifications
- E) MichiganTech Research
- F) Crane technical paper 410, Flow of Fluids Through Valves, Fittings and Pipe
- G) Multi-Vac nozzle velocities & line sizes

Calculations / Analysis:

See attached pages

1)	Fill rate	Ref
	Sludge properties given	
(1)	$\rho = 1.35 \text{ kg/L} = 84 \text{ lb/ft}^3 = \rho_{\text{max}}$	A
(2)	m = 11,446 kg	A
(3)	m = 11,446 kg $V = {}^{m}/_{\rho} = {}^{11,446 \text{ kg}}/_{1.35 \text{ kg/L}} = 8,479 \text{ L}$	
	DE & H ₂ O properties given	
	$\rho = 1.18 \text{ kg/L} = 74 \text{ lb/ft}^3 = \rho_{min}$	В
(4)	m = 9,072 kg + 16,930 kg = 26,002 kg $V = {}^{m}/_{p} = {}^{26,002 \text{ kg}}/_{1.18 \text{ kg/L}} = 22,036 \text{ L}$	В
(5)	$V = {}^{m}/_{p} = {}^{26,002 \text{ kg}}/_{1.18 \text{ kg/L}} = 22,036 \text{ L}$	
	Waste properties calculated	
(6)	m = 11,446 kg + 26,002 kg = 37,448 kg	(2) & (4)
(7)	V = 8,479 L + 22,036 L = 30,515 L	(3) & (5)
	$\rho_{\text{ave}} = {}^{\text{m}}/_{\text{V}} = {}^{37,448} {}^{\text{kg}}/_{30,515} {}_{\text{L}} = 1.23 {}^{\text{kg/L}} = 77 {}^{\text{lb/ft}^3}$	(6) & (7)
(assu	g Multi-Vac curves, for ρ of 51-100 lb/ft³ (C) and 100 ft. conveya umption 1), a 75 hp vacuum system will convey approximately 2 30 kg/hr. At 75% efficiency (assumption 2), actual production re	25 T/hr, or
(8)	$dm/dt = \eta^*(25 \text{ T/hr}) = 18.75 \text{ T/hr} = 17,010 \text{ kg/hr}$	Ass. 2
At om	$_{\text{max}}$ (least V/m), $^{\text{dV}}/_{\text{dt}}$ is: $^{\text{dV}}/_{\text{dt}} = ^{\text{dm}}/_{\text{dt}} / \rho = ^{17,010 \text{kg/hr}}/_{1.35 \text{kg/L}} = 12,600 \text{L/hr} = 445 \text{ft}^3/\text{hr}$	
1 2 7 11	$\frac{dV}{dt} = \frac{dm}{dt} / n = \frac{17,010 \text{ kg/hr}}{4.25 \text{ kg/l}} = 12.600 \text{ L/hr} = 445 \text{ ft}^3/\text{hr}$	(1) & (8)
7	7 of 7 of 7 p = 71.35 kg/L = 12,5000 E/11 = 440 it 711	(1) 4 (0)
A 35	ft ³ honner at full extraction rate would fill in <5 minutes \ \text{\chi} 100	40 4 - 1
	ft ³ hopper at full extraction rate would fill in <5 minutes. A 100 d fill in <15 minutes.	m waste box
		Ref
would	Extraction force F = pA where:	
would <u>2)</u>	d fill in <15 minutes. Extraction force	
would <u>2)</u>	Extraction force F = pA where: F = extraction force in lb. p = pressure differential in psi	
2) (9)	Extraction force F = pA where: F = extraction force in lb. p = pressure differential in psi A = cross-sectional area in in ²	Ref
2) (9)	Extraction force F = pA where: F = extraction force in lb. p = pressure differential in psi A = cross-sectional area in in ² Δp = 16" Hg = 7.84 psi	
2) (9)	Extraction force F = pA where: F = extraction force in lb. p = pressure differential in psi A = cross-sectional area in in ² $\Delta p = 16" \text{ Hg} = 7.84 \text{ psi}$ $A = \pi d^2/4 \text{ where:}$	Ref
(10)	Extraction force F = pA where: F = extraction force in lb. p = pressure differential in psi A = cross-sectional area in in ² $\Delta p = 16'' \text{ Hg} = 7.84 \text{ psi}$ $A = \pi d^2/4 \text{ where:}$ $A = cross-sectional area in in2$	Ref
(10) (12)	Extraction force F = pA where: F = extraction force in lb. p = pressure differential in psi A = cross-sectional area in in ² $\Delta p = 16'' \text{ Hg} = 7.84 \text{ psi}$ $A = \pi d^2/4 \text{ where:}$ $A = cross-sectional area in in2$ $d = nozzle diameter in in.$	Ref D
(10) (12)	Extraction force F = pA where: F = extraction force in lb. p = pressure differential in psi A = cross-sectional area in in ² $\Delta p = 16" \text{ Hg} = 7.84 \text{ psi}$ $A = \pi d^2/4 \text{ where:}$ $A = cross-sectional area in in2$ $d = nozzle diameter in in.$ $d = 5"$	Ref D
(10) (12) (13) (14)	Extraction force F = pA where: F = extraction force in lb. p = pressure differential in psi A = cross-sectional area in in ² $\Delta p = 16" \text{ Hg} = 7.84 \text{ psi}$ $A = \pi d^2/4 \text{ where:}$ $A = cross-sectional area in in2$ $d = nozzle diameter in in.$ $d = 5"$ $A = \pi d^2/4 = 19.625 \text{ in}^2$	D (12) & (13)
(10) (12) (13) (14)	Extraction force F = pA where: F = extraction force in lb. p = pressure differential in psi A = cross-sectional area in in ² $\Delta p = 16" \text{ Hg} = 7.84 \text{ psi}$ $A = \pi d^2/4 \text{ where:}$ $A = cross-sectional area in in2$ $d = nozzle diameter in in.$ $d = 5"$	Ref D
(10) (12) (13) (14) (15)	Extraction force F = pA where: F = extraction force in lb. p = pressure differential in psi A = cross-sectional area in in ² $\Delta p = 16" \text{ Hg} = 7.84 \text{ psi}$ $A = \pi d^2/4 \text{ where:}$ $A = cross-sectional area in in2$ $d = nozzle diameter in in.$ $d = 5"$ $A = \pi d^2/4 = 19.625 \text{ in}^2$ $F = pA = 7.84 \text{ psi} * 19.625 \text{ in}^2 = 153.8 \text{ lb}$	D (12) & (13) (9), (10) & (14)
(10) (12) (13) (14) (15) By in:	Extraction force F = pA where: F = extraction force in lb. p = pressure differential in psi A = cross-sectional area in in ² $\Delta p = 16" \text{ Hg} = 7.84 \text{ psi}$ $A = \pi d^2/4 \text{ where:}$ $A = cross-sectional area in in2$ $d = nozzle diameter in in.$ $d = 5"$ $A = \pi d^2/4 = 19.625 \text{ in}^2$	D (12) & (13) (9), (10) & (14) at required for
(10) (12) (13) (14) (15) By in:	Extraction force F = pA where: F = extraction force in lb. p = pressure differential in psi A = cross-sectional area in in ² $\Delta p = 16'' \text{ Hg} = 7.84 \text{ psi}$ $A = \pi d^2/4 \text{ where:}$ $A = cross-sectional area in in2$ $d = nozzle diameter in in.$ $d = 5''$ $A = \pi d^2/4 = 19.625 \text{ in}^2$ $F = pA = 7.84 \text{ psi} * 19.625 \text{ in}^2 = 153.8 \text{ lb}$ spection, extraction force at the nozzle (12) is almost double the of pure sludge (1). Since extracted particles will be considerable.	D (12) & (13) (9), (10) & (14) at required for
(10) (12) (13) (14) (15) By in: 1 ft ³ of than	Extraction force F = pA where: F = extraction force in lb. p = pressure differential in psi A = cross-sectional area in in ² $\Delta p = 16" \text{ Hg} = 7.84 \text{ psi}$ $A = \pi d^2/4 \text{ where:}$ $A = cross-sectional area in in2$ $d = nozzle diameter in in.$ $d = 5"$ $A = \pi d^2/4 = 19.625 \text{ in}^2$ $F = pA = 7.84 \text{ psi} * 19.625 \text{ in}^2 = 153.8 \text{ lb}$ spection, extraction force at the nozzle (12) is almost double the of pure sludge (1). Since extracted particles will be considerabed if the force of the extraction force is adequate.	D (12) & (13) (9), (10) & (14) eat required for le smaller
(10) (12) (13) (14) (15) By in: 1 ft ³ of than	Extraction force F = pA where: F = extraction force in lb. p = pressure differential in psi A = cross-sectional area in in² $\Delta p = 16" \text{ Hg} = 7.84 \text{ psi}$ $A = \pi d^2/4 \text{ where:}$ $A = \text{cross-sectional area in in²}$ $d = \text{nozzle diameter in in.}$ $d = 5"$ $A = \pi d^2/4 = 19.625 \text{ in²}$ $F = pA = 7.84 \text{ psi} * 19.625 \text{ in²} = 153.8 \text{ lb}$ spection, extraction force at the nozzle (12) is almost double the pure sludge (1). Since extracted particles will be considerabed if the considerabed of the considerabed in the considerabed	D (12) & (13) (9), (10) & (14) eat required for le smaller

(17)	$V_{TS} = [(^4/3)^4]$	$_{3}$)(ρ_{p} - ρ_{g})(dg)/($\rho_{g}C_{D}$)] ^{1/2} where:	(16) & E
	V_{TS}	= terminal settling velocity in ft/sec	
	ρp	= density of the particle in lb/ft ³	
	1	= density of the gas in lb/ft ³	
!	ρ _g d	= diameter of the pipe in ft.	
1	g	= gravitational acceleration in ft/sec ²	
<u> </u>	g C _D	= drag coefficient	
(18)	$\rho_{\rm g} = .08$ II	b/ft ³	F
(19)		nost conservative)	
(20)	$V_{TS} = [(^4/_3)^4]$	(1), (17),	
	= [(4/	$_{3}$)(ρ_{p} - ρ_{g})(dg)/($\rho_{g}C_{D}$)] ^{1/2} $_{3}$)(8408)(2 / ₁₂)(32.2)/(.08 * 1)] ^{1/2}	(18), Ass. 5,
	= 87	& (19)	
(21)	V = 5400	ft/min (nozzle velocity)	G

Since the velocity supplied by the vacuum system (21) is greater than that which allows settling of the particles (20) using the most conservative values for density of the sludge (1) and C_D (20) the velocity for the vacuum system is adequate.

431.02 02/26/2002 Rev. 10 EDF- 3260 Rev. No. 0 Page 18 of 33

Table B-3. Waste mass determination.

	Sludge Mass Ca	lculation		
	Gallons	Density	Kg	
V-13	1,870	1.35 y/ml	9,555	
V-14	370	1.35	1,891	
	Diatomeous ∃arth Ma	ss Canversion		
	Pounds	Conv Factor	Kg	
V-13	9,800	0.4536 Kg/16	4,445	
V-14	10,200	0.4536	4,627	
Total	Sludge Mass		11,445	
	Diacomeous Earth Mass		9,372	
	Water in Diatomaceous Earth		16,930	
			37448	374

Table B-4. Curies determination.

Radiological Results	Hi Value Diatom Earth (pCi/g/g)_	Cunes	Hi Value Słudge (pCi/g/g)	Curies	Total Curies
U-233 .	150	3.899E-03	1,780	2.037E-02	2.427E-02
U-234	150	3.899E-03	1,860	2.129E-02	2.519E-02
U-235	4,66	1.211E-04	67.8	7.760E-04	.8.971 E-04
U-236	1	2.599E-05	12.6	1.442E-04	1.702E-04
U-238	1.19	3.093E-05	14.1	1.614E-04	1.923E-04
Pu-238	29.8	7.745E-04	1,710	1.957E-02	2.035E-02
Pu-239	101	2.625E-03	2,140	2.449E-02	2.712E-02
Pu-240	101	2.625E-03	2,140	2.449E-02	2.712E-02
Am-241	18.7	4.860E-04	471	5.391E-03	5.877E-03
Th-228	34.5	8.967E-04	34.5	3.949E-04	1.292E-03
Sr-90	18,900	4.912E-01	4,570,000	5,231E+01	5.280E+01
Co-60	. 128	3.327E-03	25 ,2 00	2.884E-01	2.918E-01
Cs-137	154,000	4.003E+00	1,170,000	1.339E+01	1.739E-CI
Eu-154	0	0	6,940	7.94 3E-02	7.943E-02
Ni-63	10,300	2.677E-01	31,900	3.651E-01	6.328E-01

431.02 02/26/2002 Rev. 10 EDF- 3260 Rev. No. 0 Pags 17 of 33

Table B-2. (continued)

Analyte	DE 2CB13201	Sludge 2CB13202	
Miscellaneous Results	mg/kg	mg/kg	
B romide	1.86	ø	
Chloride	54.4	33.1	
Fluoride	0	0	
Nitrate	1.76	4	
Witrite			
Phosphere	11.9	ø	
Sulfate	481	371	
Total Carbon	17,100	76,100	
Total Halides	30.3	218	
	g/mL	g/mL	
Density	1.18	0.749	
pΗ	9.36	8.68	

The metals for 2CB13201 AND 2CB13202 were changed per reference 6 and that data was switched between the distornaceous earth and sludge based on the sludge having the higher concentrations of elements.

Formatted
Formatted

Conveying Capacities Model 7500S Diesel Stationary

MULTIVAC

Canveying Distance

A = 0-25 LBS per Cu.Ft. Bulk Density of Material B = 26-50 LBS per Cu.Ft. Bulk Density of Material C = 51-100 LBS per Cu.Ft. Bulk Density of Material D = 101-200 LBS per Cu.Ft. Bulk Density of Material E = 201-300 LBS per Cu.Ft. Bulk Density of Material

hi/morkshir/BOM/Multivoc/capacities charts/75 hp diesel

Settling Velocity

The terminal settling velocity of an airborne particle is an important quantity for characterizing the settling behavior of the particle. The aerodynamic diameter of a particle, a key property for characterizing particle deposition, is dependent upon the settling velocity.

A particle will reach its settling velocity when the drag force and buoyancy force balance with the gravitational force on the particle.

Solving for V, the settling velocity is therefore:

$$V_{IS} = \sqrt{\frac{4(p_p - p_G)}{3 p_G C_p} dg}$$

Multi-Vac

NORTH E VELOCITIES & LINE SIZES FOR SHOT SAND & FLY ASH

HP	LINE SIZE	NOZZLE VELOCITY	MATERIAL	LES FOURT
iû	.2"	5,825 ft/min	STEEL SHOT	201-300
	25	3,724 ft/min	SAND	51-100
15	- 75°	7,545 fi/min	STEEL SHOT	201-300
	2.5	4,809 ii/min	SAND	51-100
	37	3,346 fi/min	FLY ASH	26-50
20	2.5"	6,040 ft/min	STEEL SHOT	201-300
	330	4,200 ft/min	SAND	51-100
	3.5	3,080 fl/min	FLY ASH	26-50
25	3"	5,750 fl/min	STEEL SHOT	201-300
	3.5"	4,220 ft/min	SAND	51-100
4	¥31.	3,240-ft/min	FLY ASH	26-50
30	3"		STEEL SHOT	201-300
	35°	5,060 ft/min	<u>CKAR</u>	51-100
	T.	3,885 fl/min	FLY ASH	26-50
40	3.5"	6,040 ft/min	STEEL SHOT	201-300
		4,640 ft/min	SAND	51-100
	<u>5</u> ;	2,960 fl/min	FLY ASH	25-59
50		6,750 fi/min	STEEL SHOT	201-300
	Ž.	4,300 ft/min	SAND	51-100
	6 "	2,988 fi/min	HLY ASH	26-50
75	4 ³⁵	8,440 fi/min	STEEL SHOT	201-300
	And the second	5,400 Dinin	SAND	51-100
	6	3,750 ft/min	FLY ASH	26-50
100	5"	8,100 ft/min	STEEL SHOT	201-300
	6"	5,620 ft/min	SAND	51-100
	·8"	3,157 fi/min	FLY ASII	2 6 -50

 $1"H_3 = .433322 = ... = 70.5162 psf = .489769 psc$ $16"H_3 = .53232 etm = 7.8363 psc$ 5" = 70.625 = 7.8363 psc 5 = 70.625 = 7.8363 psc

144 T 1666 / 146 mmmn

EDF 096-008

Rev. No. 1

Page 1 of 17

				1 agc 1 01 1 /		
EDF Title: BR	OKK 33	0D SPECIFICATIONS - MAI	NUFACTURERS DATA			
Project No.: 2000	0-096	Project Title: OU 1-10, TSF-26 REMEDIATION				
Project Specific	Activity: E	ROKK 330D MANUFACTURERS	SPECIFICATIONS			
Problem Stateme	nt:			Md		
		red self-contained equipment to	perform the D&D and Waste Rem	oval Operations for the PM2		
Tanks, TSF-26 Re		~ -	a			
Self-Cor	tained Equ	uipment No External Power S	ources Required			
		es Electrical Tether or Radio (
			many degrees of motion and many			
The proposed e	quipment t	o be utilized is a BROKK 330D	[Track mounted diesel powered re	mote D&D equipment]		
Summary of Con	clusions:					
TSF-26 Site:		•				
THE DESCRIPTION						
			e of motion (degrees of movement			
			ion. The BROKK 330D is self-po- control systems. The BROKK 330			
			removal operations physical activi			
REVIEW AND APP			Tomovar operations physical assisti	ta val		
TETEN AND THE	1700 BELLEVI 2013					
D	R/A	TYPED NAME/ORGANIZATION	SIGNATURE	DATE		
PREPARED BY:		D. J. Kenoyer	Strall Williamen	21 05-15		
Снескед ву:		KEVIN SHABER	Munhelm	10/20/6-3		
INDEPENDENT						
REVIEWER		ORB				
APPROVAL:		GARY MEZHAM.	Jung Theat	10/2:/03		
Distribution:		,				
Registered Profes	ssional En	gineer's Stamp (if required)	-			
1						

EDF Title: BROKK 330D SPECIFICATIONS - MANUFACTURERS DATA

Project No.: 2000-096

Project Title: OU 1-10, TSF-26 REMEDIATION

Prepared by: D.J. Kenoyer

Date: 20-Oct-03 Checked by: Kevin Shaber

EDF No.

096-008

Rev. No.: Page

1 2 of 17

Date:20-Oct-03

PROBLEM STATEMENT:

TSF-26 Site Remediation Operations require the removal of the waste PM2A Tanks [V-13 (East Tank) and V-14 (West Tank)]. These waste removal operations must be accomplished utilizing robust remote equipment that has many degrees of motion and has multiple end-effectors (tools). The BROKK 330D could handle these waste removal activities during the Remedial Action Operations.

The final configuration of the BROKK 330D with specified end effectors, diesel snorkel exhaust, and video cameras and lighting will be determined during the procurement phase of the project.

ASSUMPTIONS:

The Assumptions utilized in the selection of "Known" D&D type equipment are the following capability criteria:

- Current commercial availability
- Known performance of equipment on other DOE D&D Projects
- Large range for degree of motion for equipment movement
- Multiple end effectors (tools) and availability
- Self-sufficient power source
- Remote operation capabilities

REFERENCES:

BROKK 330D Specifications

CALCULATIONS / ANALYSIS:

None Required

The researcher has previously researched, specified, and utilized other BROKK equipment on DOE D&D Projects [INEEL BROKK 220 being utilized by ER D&D Program]. These BROKK have been well received on all projects and have been instrumental in improved project efficiencies (accomplish work quicker, faster, cheaper) and improved worker safety (reduced exposure to industrial hazards involved in cutting and sizing operations).

Svenska

Products
Range of uses
More about Brokk
The company

Printed matters
News and events

Contacts in Brokk AB

Other Brokk sites: www.brokking.com www.brickingsolutions.com www.brokk.es www.brokk.uk.com

Brokk - remote demolition

Welcome to Brokk, the world's leading supplier of remote controlled demolition robots. Browse our website and find out how Brokk can help you do your job quicker, safer, more economically and a lot more user friendly.

Certified by Lloyds according to ISO 9001.

Brokk at Metec 2003

Brokk participates in Metes in June, the Metallurgical Trade Fair in Düsseldorf, Germany. Brokk has a strong position in the process Industry.

Brokk remote controlled manipulators

Brokk and Autodicollaboration
Autodesk, one of the suppliers of 3D-CAI
world, recently (z.); release of Autodesi
7. They wanted to of a Brokk demolity the packing - the ri

Brokk design engin using Autodesk Inv years now and find powerful to work w

Brokk Nuclear
is a special business
area within: the Brokk
organization. We have
more than ten years'
experience from
installations in nuclear
environ-ments. More
info and a project
example.

Top-down demolition with Brok

leading role When the 9-storey former hospital Sweden is torn down, it's with the use of compact, remot Brokk robots. The demolition contract was delicate as the building were to remain intact, housing as they are gover

More about this challenging project.

The Sandö Bridge reconstruction

Four Brokk machines are currently used to remove the entire bridge deck of what was once the world's longest concrete bridge with an arch measuring 264 metres (870 ft). Read about the impressive renovation project and why the demolition contractor, Norrlands Demolering AB, chose

Watch how Brokk f debricking: Click or take a minute to de Brokk 330

Brokk 330

Technical data sheet Brochure Brokk 330

(Click to enlarge the pictures)

The giant in the Brokk family is the 330 model. To our knowledge it is also the most powerful demolition robot available on world markets at present. As with all Brokk machines, the capacity in relation to size and weight is unsurpassed.

In spite of its low weight - Brokk 330 weighs only 4100kg without attachment - it can hardle tools of up to 550 kilo weight. Compare these figures with the weight of a normal digger equipped with the same type of breaker! What makes the difference is that a Brokk machine is designed and built specifically for demolition purposes, thus optimised for this particular kind of job. And it does it better than any other equipment available.

Another characteristic of a Brokk robot is that it is electrically powered. It is quiet and environmental friendly as it produces no exhaust friendles. This is especially important when the machine is used for indoor demolition. Although it is our biggest model, Brokk 330 is small enough to negotiate narrow passages.

Examples of uses for the Brokk 330 are demolishing bank vaults, cleaning stag in blast furnaces, major building demolitions, cement kiln demolition and waste handling in the nuclear industry.

Brokk 330: Height 1540mm Width 1500mm Weight 4100kg

Click on Brokk 330 data sheet for more technical information.

Click here to see the Brokk 330 brachure.

Read a)so: range of uses, accessories

You will need to have Acrobat Reader installed on your computer to view the data sheets and brochures. You can download it free from Acrobat Reader.

Questions about this model? Get in touch with your local Brokk dealer or us directly at info@brokk.com

HYDRAULSYSTEM

Pumptyp Variabel lastkännande kolvpump
Systemisyck standard
Flöde
6-100 l/min
ELMOTOR
30kW
Varvial
Spänning/Frekvens
Se maskinskylt
Ström
So maskinskylt
Ström

Varval
Varval
Spänning/Frekvens
Spänning/Frekvens
Spänning/Frekvens
Spänning/Prekvens
Spänning/Prekvens
Spänning/Prekvens
Spänning/Prekvens
Spänning/Prekvens
Signalöverföning
Digital

HYDRAULIKANLAGE

Pumpentyp Variabel, lastabtastende Kolbenpumpe Arbeitsdruck, Standard 16,5 MPa Fördermenge 6-100 l/min ELEKTROMOTOR 9-100 l/min Motorleistung 30kW Motorleistung Siehe Maschinenschild Spamung/Frequenz Siehe Maschinenschild Strom Stelm Maschinenschild Strom Stelm Maschinenschild Anlasser YID Starter BEDIENUNGSANLAGE

Control unit Signal code Control mode

SYSTÈME HYDRAULIQUE

Pompe type à piston variable, à capteur de charge
Pression de système, standard 16,5 MPa
Débit 0-100 I/mito
MOTEUR ÉLECTRIQUE
Puissance
Nombre de tours
Voir plaque signaleitque
Tension/fréquence
Voir plaque signaleitque
Courant

Tension/fréquence Voir plaque signalétique
Courant
Couple démarrage
SYSTÈME DE COMMANDE
Dispositif de commande boitier de commande
Transmission de signaux
Digital
Transmission
Câble

Kabel

Tragbarer Steuerkasten

Signalübertragung

Übertragung

Steuervorrichtung

laten ill andringer stan fergebend

Silement before y greate & rends the beneficies on the view has needed-aging rankbeens statis vibrance, Prochémies nichts vandecent Foerensfarmels and derbats princi. Silemeterns anderdelectriculeur, laper och Einschapes glännde anderstagde och ander administrationer, laper och Einschapes glännde anderstagde och ander administrationer, laper och Einschapes glännde anderstagden virk and einst intercensish in hort her endergande. produkt on the analest at the plens polit is fare. Produkti mod its und in glännere, will sieh pracke and applicable statuer, regulation, codes and glännere.

nomena. Nobele filosofite I Indonegen und serum webehalten. I Sprefisciones robject is ditembo willoof prin melle. I Coverbrungnes septies de des modifications non prinsi

Addressing steven von Erbessings od orsten nicht stedening den Anderson gegenwicht ja Aden Johnst von Gegenwicht ja Aden Johnst von Gegenwicht ja Aden Johnst von Gegenwicht gegen der Amsterderund des Bertinstells ausgebieder werden. Am der Steden Vorschiellen und Bastimittrafen Beigestell werden. Am der Gerange Angele, Vorschiellen und Bastimittrafen Beigestell werden. Am der der Gerange der Gegenwicht gegen gege

PO Box 730

SE-9313.7 Skelleftea · Sweden

Tel: +46 910 713 800

Faz: +46 910 713 811

Faz: +46 910 713 811

Www.brisk.com

orakk.com 800504-F

Part No. 3136 8005 04 Issue. F

Variable displacement loadsensing

HYDRAULIC SYSTEM

Type of pump

Pressure

16,5 MPa

0-100 Vmin (0-26 US gal/min)

ELECTRIC MOTOR

Number or revolutions Voltage/Frequency

Output

SE SE

30kW

See marking See marking See marking

Tekniska data Technical data

Technische Daten Caractéristiques techniques

(E)

Digital

Remote control box

CONTROL SYSTEM

Starting device

Amperage

Y/D starter

Brokk 330

Productive related 1900 mm Lechnical Data Lechnic	(B)	8		(3a)		FR		
154 mm MANUEL	Tekniska data			Technische Daten		Caractéristiques tech	nianae	
150 mm		MEASUREMENTS				DIMENSIONS	2	
Transport with, configures blocked 350 nm	i i	I (ansport length exci attachment			3920 mm	Longueur, outil n.c.	3920 тіп	
According with corregars folded 1300 mm		ransport hight, lowest			1540 mm	Hauteur mini de transport	1540 mm	
Control of Control o		Transport width,		Breite, Fahrstellung, mit hoch-	000	Largeur, héquilles relevées	1500 mm	
Action Committee Committ		Ground clearance, approx			1500 min	Garde au sol	200 mm	
Accordance Acc	ל ונוכח מולמונים פוסחתפו	Operating width, outriggers folded			200 mm	Largeur avec béquilles déployées	2430 mm	
Action Continue		نه		en	2430 mm	Largeur de chenille	250 րող	
1,0,000 1,0,		Weight complete			250 տա	POIDS Poids total, sans outil	4300 kg	
14 sec/566 14 sec/566 1210 14 sec/566 1210 14 sec/566 1210 14 sec/566 1210 12 sec/566 12 sec/566		Load tracks, excl attachment	,055 N/mm²	GEWICHTE		Pression au sol, chenille, sans outil	0,055 N/mm²	
14 sec/360° Shewing speed 14 sec/360° Shewing speed 14 sec/360° Shewing speed 14 sec/360° Shewing speed 18 km/h 1,1 mish Shewing speed 18 km/h Shewing speed	ях	u			4300 kg 0.055 M/mm²	Poids marteau, maxi	550 kg	
1.4 sec/360° Sleving speed 1.4 sec/360° Tables debungs 1.3 km/h Maximum travel speed 1.6 km/h 1,1 mith 30° Tables debungs 1.8 km/h Maximum travel speed 1.6 km/h 1,1 mith 30° Tables debungs 1.8 km/h Maximum travel speed 1.8 km/h Maximum 1.1 km/h	PRESTANDA Runtomsvängande	PERFORMANCE Unlimited revolutions			550 kg	PERFORMANCES Rotation Illimites		
1,8 km/h Maximum travel speed 1,8 km/h 1,1 mith Schwingeschwindigheit, maximal 1,8 km/h Maximale Steigung 3920 154.4" 5 (16.4)		J° Slewing speed	4 sec/360°	LEISTUNG		Vitesse de rotation maxi	14 sec/360°	
Dimension in m (th) Advantage Stephens (19,14) A (13.1) Analysin Stephens (19,14) A (13.1) A (13.1)		Maximum travel speed			:	Vitesse maxi de fransport	1.8 km/h	
imension in m (ft) 7 (22.9) 6 (19.7) 6 (19.7) 6 (19.7) 5 (16.4) 2 (6.6) 1 (3.3) 1 (3.3) (6.6) (13.1) (19.7) Maximis Serigons 3 920 154.4* 3 920 154.4* 6 (19.7) 1 (3.3) 1 (3.3) 1 (3.3) 1 (3.3) 1 (3.3) 1 (3.3) 1 (3.3) 1 (3.3) 1 (3.3) 1 (3.3) 1 (3.3) 1 (3.3) 1 (3.3) 1 (3.3) 1 (3.3) 1 (3.3) 2 (6.6) 1 (3.1) (19.7)		Gradient	0	ļ.	14 sec/360°	Pente	30°	
2 (6.6) (13.1) (19.7) (22.9) (19.7)	Dimension in m (1,6 Km/n 30°			
6 (19.7) 4 (13.1) 4 (13.1) 4 (13.1) 5 (16.4) 2 (6.6) 1 (3.3) (9.8) (9.8) (1.3.3) (9.8) (1.3.3) (1.3.4) (1.3.4) (1.3.5) (1.3.5) (1.3.5) (1.3.5) (1.3.5) (1.3.6) (1.3.7) (1.3.7) (1.3.8) (1.3.8) (1.3.9) (1.3.9) (1.3.1) (1.3.1) (1.3.1) (1.3.1) (1.3.1) (1.3.1) (1.3.2) (1.3.3) (1.3.3) (1.3.4) (1.3.4) (1.3.4) (1.3.4) (1.3.4) (1.3.4)		7 (22.9)			154.4"	-		
5 (16.4) 4 (13.1) 2 (6.6) (13.1) 1 2 3 4 5 6 7 (6.6) (13.1) (19.7) (6.6) (13.1) (19.7)		6 (19 7)						
1 (3.3) (6.6) (13.1) (19.7) (19	*	0 (19.7)		F.		(0)	 	
4 (13.1) 2 (6.6) 1 (3.3) (3.3) (9.8) (16.4) (22.9) (6.6) (13.1) (19.7)		5 (16.4)			800			
2 (6.6) 1 (3.3) 2 (6.6) 2 (6.6) 2 (6.6) 2 (6.6) 3 (9.8) 1 (3.3) 2 (6.6) 3 (9.8) 4 (13.1) 1 2 3 4 5 6 7 (3.3) (9.8) (16.4) (22.9)		4 (13.1)		THEORIK SEND				
2 (6.6) (13.1) (19.7) (6.6) (13.1) (19.7) (6.6) (13.1) (19.7)		3 (9.8)		+			1/ :	
2 (6.6) (13.1) (19.7) (6.6) (13.1) (19.7) (10.7) (10.7) (10.7) (10.7) (10.7) (10.7) (10.7) (10.7) (10.7) (10.7)		(200)			 		267	
1 (3.3) (9.8) (16.4) (22.9) (6.6) (13.1) (19.7)		2 (6.6)		12/1/1-		gi.	1	
2 (6.6) (13.1) (19.7)		1 (3.3)			1			
1 2 3 4 5 6 7 (13.1) (19.7) (6.6) (13.1) (19.7)					1		7	
1 (3.3) (9.8) (16.4) (22.9) (6.6) (13.1) (19.7)		0 (0)		Ø1920 75.6"		+		
1 2 3 4 5 6 7 (3.3) (9.8) (16.4) (12.9) (6.6) (13.1) (19.7)		1 (3.3)						
1 2 3 4 5 6 7 (3.3) (9.8) (6.6) (13.1) (19.7)		2 (6.6)				-		
1 2 3 4 5 6 7 (3.3) (9.8) (16.4) (22.9) (6.6) (13.1) (19.7)	Q Q	(6:5)			_			
(3.3) (9.8) (16.4) (22.9) (6.6) (13.1) (19.7)		3 (9.8)						
(3.3) (9.8) (16.4) (22.9) (6.6) (13.1) (19.7)		4 (13.1)			7 4			
(9.8) (16.4) (22.9) (6) (13.1) (19.7)	-	9						
	(3.3) (9.8) (6.6) (13	₹.5				1500 59.1"	ļ 	
						1100 001	T	

Brokk 330

Extra demolition power for the heaviest tasks

Brokk 330

Control system

Brokk 330 has a modern, digital control system with a separate display for trouble-shooting and programming to increase safety. All cables are protected to secure

The Brokk 330 can also be

problem-free operation.

Small exterior dimensions and the compact design make work in very tight spaces possible.

Undercarriage

Support leg cylinders, hoses and couplings are protected to avoid damage. Steel caterpillar tracks.

When the Brokk 330 is equipped with a crusher, you can use it for very heavy demolition work, even during the day in densely populated areas.

Electric motor

Thanks to the 30 kW motor, the Brokk 330 can carry very powerful tools. Subsequently it performs very heavy and difficult demolition tasks in an efficient way.

Building demolition is one area where you can use the Brokk 330 for very heavy tasks. Here, a bank vault is being demolished so that the area can be used for other purposes. The Brokk 330 demolishes quickly and efficiently, when for different reasons, the amount of demolition time is limited.

The strongest demolition machine

Strongest in the Brokk series

The Brokk 330 is the strongest demolition robot in the Brokk series. It is also the demolition robot that currently has the highest capacity in the world. You can equip the Brokk 330 with tools such as hydraulic hammers, concrete crushers, drilling equipment, different types of buckets, etc. with a weight of up to 550 kg (1210 lb), even though the machine only weighs 4200 kg (9240 lb). When you need extra power for maximum capacity and efficiency, the Brokk 330 is your obvious choice.

Effective at foundries ...

You can use the Brokk 330 for all kinds of demolition work. In the processing industry, slag lining removal and cleaning of ladles and furnaces are just a few examples of the types of work that you can do efficiently using the Brokk 330. Other usage includes replacing the linings in cement and pig iron furnaces, removing linings in tile stoves, and when demolishing within the pulp industry.

... and for heavy construction demolition

You can also use the Brokk 330 for very heavy demolition within the construction industry. Experienced operators and the Brokk 330 can do all these tough jobs faster, safer, and more efficiently.

Safety with Brokk

Brokk makes the workplace safer. Operators control the machine with the aid of a remote control, which means that they can remain at a safe distance from falling debris. The standard Brokk machine is electrically powered, which also improves the working environment compared to diesel-powered machines.

Products							
Facts	de de la companya de	OF AGE	Rote Sp	de Mark	00/ 100 May.	1 - 250 1 - 250 1 - 250	/
Weight, kg (lb)	380 (794)	830 (1839)	930 (2050)	1900 (4190)	3060 (6750)	4180 (9030)	
Width mic. sam (in)	600 (23,6)	780 (30,7)	785 (30,7)	800 (39,4)	1200 (47,2)	1500 (58,5)	
Height min. mm (in)	740 (28,8)	1210 (47,6)	1210 (47,6)	1342 (52,8)	1760 (69,3)	1540 (60,6)	
Motor autput, KW	4	7,5	11	15/18,5	22	30	
Recommend./max. weight attachment, kg (lb)	60 (132)	75 (155)	120 (265)	230 (507)	350 (771)	550 (1210)	

Typical Brokk! With more than 20 years of experience and as the leading manufacturer of demolition robots, we know what's needed. A world-wide sales and service organisation is your guarantee for quick, reliable service.

Each Brokk machine is built to meet the most stringent requirements. When the situation seems hopeless, Brokk is the answer. Typical Brokk work!

You cannot afford to wait any longer. Welcome to the Brokk family!

Brokk AB P.O. Box 730 SE-931 27 Skellefteå, Sweden Tel +46 910 711 800 Fax +46 910 711 811 E-mail: info@brokk.com, www.brokk.com

Accessories

Hydraulic breaker

The most common attachment used on a Brokk machine is a hydraulic breaker. Our main range that suits our machines includes the following breakers:

Brokk 40 - SBC60

Brokk 96 - SBC115

or - SBC255

Brakk 180 - SBC410

Brokk 250 and 330 - SBC510,

Brokk 330 also SBC800

Click on the pictures to enlarge them.

Other types of breaker can also be used on Brokk machines. The size of the chosen breaker depends a lot on the weight ratio. It may sometimes be necessary to use a side-angling device.

Your local Brokk dealer or our head office can help you with more information info@brokk.com

Concrete crusher

We can offer the following three models:

Brokk CC260- developed especially for the Brokk 40

Brokk CC320 - to be used with Brokk 90

Brokk CC400 - for Brokk 180

Brokk CC560 - designed for Brokk 250 and 330

Click on the pictures to enlarge them.

For technical details click on <u>Brokk CC260 technical data</u>, <u>Brokk CC320 technical data</u>, <u>Brokk CC400 technical data</u> or <u>Brokk CC560 technical data</u>. You need to have a program that can read this type of file (.pdf) e.g. Actrobat Reader. You can download it free from <u>Acrobat Reader</u>.

To see the crushers in action, check out range of uses

Bucket

There is at least one type of bucket available for each Brokk model, sometimes several. The buckets are used mainly to clear away debris but can also be used to turn Brokk into an ordinary digger for drainage work etc.

Clamshell bucket

We can also offer a range of clamshell buckets.

Grapple

We can provide three sizes of grapple. They can be used e.g. for clearing away piping and ventilation ducts. The grapples are called **Brokk G30**, **Brokk G50** and **Brokk G80** (no picture available). They are designed for Brokk 40, 180 and 250/330 respectively. Click on the pictures to enlarge them.

Brokk G30

Brokk G50

Other tools

We can also offer other tools, such as drilling equipment, cutters, steel shears, etc. A range of other accessories is also available for increased safety and to maximise the use of the machines.

For more detailed information concerning our accessories, please get in touch with your local Brokk dealer or with our head office directly info@brokk.com

5venska

More about Brokk

environment

Transport

The company

Printed matters News and events

Contact

Contacts in Brokk AB

The name

The name has been taken from the mythical figure Brokk, who forged the god of war Thor's sword in the realm of the Norse gods. Brokk was small but very strong, just like our machines.

He was also something of an artful character, which could also characterise our designers, or perhaps the people who use the machines?

Characteristics

Distinguishing features for Brokk are:

Remote control - operated from a portable cable or wireless control box.
Electric-hydraulic operation - no exhaust fumes, low noise levels.
Compact power - small dimensions, lightweight but strong.
Wide range of options - can be equipped with many different types of attachment.

can carry very powerful atttachments for its weight

Range of uses

Construction

(Click to enlarge the pictures)

Demolishing buildings includes a number of tasks for which you can use your Brokk machine. The first thing that comes to mind is probably the demolition of concrete structures using a hydraulic breaker.

In some cases, concrete can also be crushed using a concrete crusher. This method is faster and quieter. Adjoining work can often continue uninterrupted and demolition can even take place at night.

Brokk machines are mostly used for partial demolition during the renovation of buildings. This is also when its compact size and flexibility comes to its right. Its precise control enables demolition of only the sections that need to be removed, while leaving the remaining sections unscathed. Electric operation also makes it easy to use indoors.

Brokk is also employed for chiselling up channels in floors to allow the replacement of drains, removing tiles and clinker, completely or partially demolishing walls and pillars, cutting down pipes, demolishing chimney stacks from top to bottom, etc. There is a Brokk model for all jobs.

From a work environment point of view, Brokk is excellent; no exhaust furnes, no vibration injuries, good operator visibility, small risk of injury due to falling objects. This is the reason for Brokk becoming a household word in the construction industry.

Renovating buildings is most common in large urban areas. The innumerable concrete blocks that were built after the war are now of an age that requires substantial renovation. Here, an efficient worker such as Brokk is an invaluable asset.

Another benefit in using a Brokk machine is that it facilitates recycling of the material resulting from the demolition. You don't just blast it all away, it must be disassembled into its component parts and sorted.

Range of uses Page 2 of 4

Retaining old facades while renovating the inside of buildings is also commonly done. Selective demolition is then a necessity, i.e. you must choose what to remove and demolish only that.

Learn more about construction demolition from the <u>Demolition Handbook.</u>
You need a special program to read this type of file (.pdf). You can download it here <u>Acrobat Reader</u>

Process

Click on the pictures below to get a better view of what Brokk can do within the processing industries.

Processing industries where Brokk machines have been put to use are steelworks, aluminium, copper and other metal production processes, foundries, paper mills, etc.

These industries offer ideal opportunities for Brokk machines to prove their versatility and adaptability.

Among the most common areas of use is stripping linings in ladies, kilns, torpedo cars, tapping spouts, runners, etc.

Removing linings is a very delicate task. It is important not to damage the bottom lining which is costly to repair or replace. Brokk robots can be operated with great accuracy. The remote control makes it possible for the operator to stand close to the working area of the breaker.

As every minute of downtime in the process industry is extremely expensive, maintenance work must be carried out quickly. This is where Brokk is at its best as the machine can get to work immediately even though heat, gas and dust may prevent people from entering the place.

Quite a bit of other demolition work must also be done on industrial sites, such as clearing slag and demolishing foundations.

In their standard configuration, Brokk machines can cope with most environments. In extremely demanding and aggressive environments, they can be equipped with extra options such as heat protection.

See the special brochure for <u>Brokk in process</u>. You need a special program to read this type of file (.pdf). You can download it here <u>Acrobat Reader</u>

Cement

Cement industries worldwide use Brokk for stripping linings and cleaning kilns. Brokk does this so well that cleaning just one kiln is usually enough to earn back the initial investment. The machine can get to work much earlier, even before the kiln has completely cooled down. Brokk is electrically powered and can therefore operate inside the kiln without causing exhaust problems.

Earlier methods of blasting away the surface were very difficult to control. When a Brokk robot is used, the operator can stand away from the falling debris and the machine is so easy to operate and works with such precision that the underlying surfaces are left undamaged.

Brokk can be used both for complete and for partial renovation of cement kilns. Its compact size enables it to pass through narrow kiln openings. Each hour of production standstill costs a lot of money at a cement plant, making short kiln downtime a necessity. Putting a Brokk machine with skilled operator to work saves time which translates into increased productivity and output.

And when new refractory bricking is to be put in place, you can use equipment supplied by our U.S. subsidiary, Brokk Bricking Solutions. They provide equipment such as a mechanised installation rig. Isser instrumentation and transport system for the brick. You can learn about their method and products in the article "Reducing downtime" and "Reducing refractory costs". For additional details, please visit www.brickingsolutions.com.

See the special brochure for <u>Brokk in cement.</u> You need a special program to read this type of file (.pdf). You can download it here <u>Acrobat Reader</u>

Nuclear

If ever there is a reason to use remote controlled machines, it is when it comes to handling nuclear waste. Brokk manipulators therefore have a place to fill in the civil and military nuclear industries around the world.

Although the machines must often be provided with special equipment and features to work in nuclear industries, they are still based on the well-proven Brokk technology. Remote control, electrical operation, compact size, precision and strength – all the outstanding features of a Brokk machine are required here.

Brokk remote controlled manipulators can be used as a transportable or stationary robot in contaminated areas.

Other applications

Brokk can also be used for other applications. There are stationary units working with crushing machines, robots working in sugar plants, renovating bridges, clearing asbestos, renovating tunnels, cleaning sewer tunnels with remote control - the list of applications where Brokk machines make a difference can be made very long.

ENGINEERING DESIGN FILE

EDF 096-009

Rev. No. 1

Page 1 of 28

			Page	1 of 28
EDF Title: TSF-26	RUBB BUILDING SYSTEMS SP	ECIFICATIONS AND VENDO	OR OUOTES	
Project No.: 2000-096		Project Title: OU 1-10, TSF-26		
Project Specific Activ	ity: TEMPORARY ENCLOSURE STRUCT	URE SPECIFICATIONS / QUOTES		
Problem Statement:				· · · · · · · · · · · · · · · · · · ·
manufacturers to meet Operations. The Temp during waste removal Minimize We Optimize Size RUB RUB Syste Minimize Cos Summary of Conclust TSF-26 Site: RUBB THA - COS RUBB Special RUBB Special RUBB Special RUBB Special RUBB Special RUBB Special RUBB Special	Cost => \$22,000	mks (V-13 [East Tank] and V-1 ride a "Secondary Confinement" tical items: d Site Restrictions within the Enclosure l] length] has 22'0" Side Walls to prome	4 [West Tank]) Ren ' of any airborne was ovide cover over the Very seed offset distances from	medial Action aste generated Waste Vacuum om the
REVIEW AND APPROVA	al Signatures:			
	A TYPED NAME/ORGANIZATION	Signature	DA	TE
PREPARED BY:	D. J. Kenoyer	Saraleh Il Karnger	2i Oct 13	
CHECKED BY:	KEUIN SHABER	the State	10/20/5	3
INDEPENDENT	1			
APPROVAL:	Say Tales	GARY MECHAM	10/21/0	13
Distribution: Registered Profession	al Engineer's Stamp (if required)		·	

EDF Title: TSF-26 RUBB BUILDING SYSTEMS SPECIFICATIONS AND VENDOR

OUOTES EDF No. 096-009 Rev. No.:

Project No.: 2000-096

Project Title: OU 1-10, TSF-26 REMEDIATION

Page 2 of 28

Date: 17-Oct-03 Checked by: Kevin Shaher Prepared by: D.J. Kenoyer Date: 18-Oct-03

PROBLEM STATEMENT:

TSF-26 Site Remediation Operations require the removal of the waste PM2A Tanks [V-13 (East Tank) and V-14 (West Tank)] and the placement of temporary enclosure structures [RUBB THA Shelter / RUBB Special Shelterl. The weight of these items was calculated and the GROVE GMK5240 Technical Manual consulted to assure these items could be handled during the Remedial Action Operations.

The Temporary Enclosure Structures must be durable fability to last the life of the project without repair and/or maintenance - 12 months], lightweight, and cost effective. INTREPID will prepare a "Specification" for the "Temporary Enclosure Structures" based upon information developed in this research.

The placement / positioning of the GROVE GMK52400 crane is critical in relationship to the edge of the excavation to assure there is no failure of soil stability in that area.

ASSUMPTIONS:

The Assumptions utilized in the performance of these specifications / calculations are outlined below:

- General Specification for RUBB THA Shelter and RUBB Special Shelter
 - Steel Structural Framing System for strength [truss or tube framing system]
 - Translucent Panels for Roof to allow light filtration into facility [minimize need for lighting]
 - Continuous Steel Framing at bottom for lifting and anchoring [utilize Jersey Bouncer (concrete traffic barriers)
 - Internal Lifting Framing System [allow structure to be lifted by crane]
 - Personnel and Equipment Access Doors [allow placement of BROKK 330 into facility]
 - On-Site Assembly and Erection of Structure
- Lifting capabilities of GROVE GMK5240 based upon Guide Chart
- Weight calculations of RUBB THA Shelter based upon General Specification, Subsection 1.1
- Weight calculation of RUBB Special Enclosure based upon technical representative phone conversation

REFERENCES:

GROVE TM9120 Lifting / Crane Capabilities Guide Chart, page 7

RUBB THA Shelter General Specification, dated 24-Apr-03

RUBB General Technical Specifications for RUBB Buildings and Shelters (GTS) 4/01

RUBB THA Shelter Vendor Quote, dated 15-Jul-03

Phone conversation with RUBB Technical Representative, Mark Boutet, on 16-Jul-03 @1247 MST ... standard 3." X 3.5" angle is ¼" thick.

Phone conversation with RUBB Technical Representative, Xxxx Yyyy, on 17-Oct-03 @1450 MST ... the RUBB Special Enclosure weight works out to be 8 pounds per square foot.

CALCULATIONS / ANALYSIS:

See Attached RUBB Manufacturers Technical Specifications for the THA Shelter

- RUBB THA Shelter [26.2' width x 65.0' length]
 - Cost => \$22,000
 - Weight => 7,175 lbs
 - Galvanized Steel Structure
 - Continuous 3.5" x 3.5" galvanized base angle foundation
 - PVC Folding Door [Equipment Access] in one gable
 - Vents at gables at both ends
 - PVC coated polyester fabric roof (white translucent) and walls (colored) [flame retardart]

EDF Title: TSF-26 RUBB BUILDING SYSTEMS SPECIFICATIONS AND VENDOR

 QUOTES
 EDF No.
 096-009

 Project No.: 2000-096
 Rev. No.:
 1

 Project Title: OU 1-10, TSF-26 REMEDIATION
 Page
 3 of 28

Prepared by: D.J. Kenoyer Date: 17-Oct-03 Checked by: Kevin Shaber Date: 18-Oct-03

CALCULATIONS / ANALYSIS - (CONTINUED):

See Attached RUBB Manufacturers Technical Specifications for the Special Enclosure

- RUBB Special Shelter [16.0' width x 35.0' length] with 22'0" High side walls
 - o Cost => \$31,000
 - Weight ==> 4,730 lbs
 - o Galvanized Steel Structure
 - Continuous 3.5" x 3.5" galvanized base angle foundation
 - o Overhead Rollup Door [Equipment Access] in one gable
 - Vents at gables at both ends
 - o PVC coated polyester fabric roof (white translucent) and walls (colored) [flame retardart]

INTREPID must come up with a "Hold-down Structural Member" to attach to the 3.5" x 3.5" galvanized base angle foundations to allow the Jersey Bouncers to be placed on to act as ballast. The 3.5" x 3.5" galvanized base angle foundations are ¼" thick per conversation with RUBB technical representative. It is recommended that a standard ½" thick, 3 ½" wide, and 2'0" long bar stock be utilized to weld to the bottom of this foundation angle at the locations where the steel trusses tie into the foundation angle [apply a ½"-weld 2" long on each weld face]. This will provide the necessary hold-down support with the Jersey Bouncers acting as ballast.

These temporary enclosure structures are to be located at the bottom of the excavation for the PM2A Tanks which is approximately 16'0" deep. Since the RUBB THA Shelter is only 3 meters (approximately 11'0") at the side walls and only 5 meters (approximately 16'6") at the gable ends, most of the structure will be out of the direct wind and should not encounter significant wind forces (over turning, push, lift). The RUBB Special Shelter has side walls approximately 7 meters high (approximately 22'0") and may represent a higher wind profile than the adjacent RUBB THA Shelter.

The following is a listing of the attached RUBB information [22 pages]:

- RUBB Telefax Vendor Quote, 17-Oct-03, 3 pages
- RUBB Telefax Vendor Quote, 15-Jul-03, 3 pages
- RUBB Letter THS Shelter Photos, 15-May-03, 3 pages
- RUBB Letter Vendor Quote, 24-Apr-03, 2 pages
- RUBB THA Shelter General Specification, 4 pages
- RUBB Business Card, 1 page
- RUBB Letter Vendor Quote, 22-Apr-03, 2 pages
- RUBB Detailed Engineering Drawing for THA Structure 40' span, 1 page
- RUBB General Technical Specifications for RUBB Buildings and Shelters (GTS) 4/01, 6 pages

2073242347

TELEFAX

COMPANY:	Intrepid Engineering Services, Inc.	RUBB INC.,
ATTN:	Mr. Doug Larson	Sanford Airport P.O. Box 711
FROM:	Bob Normandeau (bnormandeau@rubbusa.com)	Sanford, Maine 04073 Tel: (207) 324-2877 — Fax: (207) 324-2347
FAX NO:	208-529-1014	E-mail: info@rubbusa.com
NO. SHEETS:	3	
REF:	Budgetary Quote	Sent []
DATE:	October 17, 2003	w-version.
Doug,		

Attached you will find a copy of the budgetary quote that you requested. After your review if you have any questions please call me at your convenience. The quote as usual is set up in a line item format. The last quote didn't require site erection and other items. You can deduct these if you don't need them.

Thanks,

Bob

PAGE 01/03

RUBB, INC.

P.O. Box 711, 1 Rubb Lane Sanford, Maine 04073 USA Tel: 207 324 2877 Fax: 207 324 2347

E-mail: info@rubbusa.com

October 17,2003

Intrepid Engineering Services, Inc. Mr. Doug Larson 501 West Broadway Street Idaho Falls, ID 83402

2073242347

0481-03BJN

Dear Mr. Larson,

It was a pleasure speaking with you over the phone. Following is the budgetary quote that you requested during our last phone conversation. After your review if you have any questions please call me at your convenience.

 $16' \times 35'(W \times L)$ BVR Rubb building, with 22' sidewalls:

\$19,363

This budgetary price includes a complete steel structure. The steel is hot dip galvanized after the welding process to provide a maintenance free structure. As standard, the Rubb building is supplied with vents in the gables. The walls and roof are clad with a 28 oz./sy PVC coated polyester fabric. The roof is translucent white and the walls are available in a range of standard colors. The material is flame retardant. The building will be supplied according to BOCA building code based on a ground snowload of 25 psf, a basic steady wind speed of 90 mph and a 3 psf collateral load. Structural calculations are available to assist with application for building permission if required. Material test certificate can be provided. Unless otherwise specified, foundation is customer's responsibility.

(1) 3' x7' (w x h) steel personnel access door: (Including support wood/steel framing)	\$	800
(1)14 x 16° (w x h) overhead industrial rolling steel door:	\$	4,724
(1) Set of resin bolts to attach building to existing concrete pad:	\$	612
(1) Set of lifting bracket and cable assemblies:	\$	1,000
Freight Charge	. \$	4,500
Estimated Installation: (Non-Union Rubb Crew, Standard Wages, Travel, Equipment, Expenses)		9,800

PAGE 03/03

October 17, 2003 Mr. Doug Larson Page 2 of 2 40,800 > 31,000

Total:

\$ 40,799 ఇట్ట్ర

All prices are based on U.S. Dollars, FOB Sanford, Maine, and are good for 60 days. Our prices exclude sales tax, building permissions or fee's and any bonding requirements. Also excluded are any utility connections to facility for required water, electrical, telephone and fire alarm services. All sales are subject to Rubb, Inc.'s General Terms and Conditions.

Our standard terms of payment for a purchase are: 40% due with order, 50% upon delivery and 10% due net 30 days with a 1% discount if paid within 10 days.

I hope that you find the enclosed of interest and that we have the opportunity to discuss your requirements in the near future. If you feel that a meeting would be beneficial, or if any additional information is required, please contact me at 1-800-289-7822 and I would be happy to assist you further.

Assuring you of our best attention to quality and service at all times.

Sincerely Rubb, Inc.

Folest Wormandeau

Bob Normandeau

Bulk Facility Sales

2873242347

TELEFAX

COMPANY:	Intrepid Engineering Service Inc.	RUBS INC.,
ATTN:	Doug Larson	P.O. Box 711
FROM:	Bob Normandeau (bnormandeau@rubbusa.com)	Sanford, Maine 04073 Tel: (207) 324-2677 — Fax: (207) 324-2347
FAX NO:	208-529-1014	E-mail: info@rubbusa.com
NO. SHEETS:	3	
REF:	Budgetary Quote	Sent[]
DATE:	July 15, 2003	
Doug,		

Attached you will find the revised budgetary quote we discussed earlier on the phone. If you have any questions please call.

Thanks, Bob

July 15, 2003

RUBB, INC.

P.O. Box 711, 1 Rubb Lane Seriford, Maine 04073 USA Tet: 207 324 2877

Fax: 207 324 2347 E-mail: info@nubbusa.com

Intrepid Engineering Services, Inc. Mr. Doug Larson 501 West Broadway Street Idaho Falis, ID 83402 0234-03aBJN

Dear Doug,

Thanks for your continued interest in Rubb Buildings. Per our conversation, please find pricing on a new 10m x 65° THA shelter that you requested.

(1)) 26.2' x 65' The Range Rubb shelter with an 11' sidewall

\$ 17,300

This price includes a complete galvanized steel structure manufactured and ready for erection by using sleeve joints and a PVC folding door in one gable. As standard, the Rubb shelter is supplied with vents in the gables. The walls are covered with colored and the roof with white translucent high strength, PVC coated polyester fabric. The material is flame retardant. Secure fastening to the ground and erection is customer's responsibility.

Total:	\$ 22,000
(1) Freight Charge:	\$ 3,400
(I) Set of foundation ballasts:	\$ 500
(1) Set of lifting eyes and cables:	\$ 800

The THA shelter comes standard with a continuous 3.5" x 3.5" galvanized base angle foundation. This can be affixed to either prepared or natural ground surfaces with a variety of fastening methods.

The THA shelter has been created to serve as a heavy duty, all purpose shelter. Though not designed to the strict code standard of our building ranges, the THA shelters have been destruction tested at our factory to ensure their reliability in the field. The THA's primary advantages are as follows:

- I. Low initial and lifetime costs
- Can be erected or dismantled with minimal tools

July 15, 2003 Mr. Doug Larson Page 2 of 2

- Can be erected on almost any surface 3.
- Packs to a small shipping volume

2073242347

High degree of part interchangeability

For many storage and site workshop situations, the THA provides the optimal solution to the need for durable cover and planning flexibility.

All prices are based on U.S. Dollars, FOB Sanford, Maine, and are good for 60 days. Our prices exclude sales tax, building permissions or fee's and any bonding requirements. Also excluded are any utility connections to facility for required water, electrical, telephone and fire alarm services. All sales are subject to Rubb, Inc.'s General Terms and Conditions.

Our standard terms of payment for a purchase are: 40% due with order, 50% upon delivery and 10% due not 30 days with a 1% discount if paid within 10 days.

I hope that the enclosed information will be of help to you when you receive inquiries from municipal offices around the state. If you need more information or further assistance or additional literature, please contact me at 1-800-289-7822.

Assuring you of our best attention to quality and service at all times.

Sincerely

Rubb, Inc.

Bob Normandeau **Bulk Facility Sales**

BN/jmb

16 Juy 03 @ 1247 mat 1-800-200-7022 MARCH BOLTER 3.5 = 3.5 ~ V4 ? ASS JELLY

May 15, 2003

Kany ki-Metings

RUBB, INC.

P.O. Box 711, 1 Rubb Lane Sanford, Maine 04073 USA

Tel: 207 324 2877 Fax: 207 324 2347 E-mail: info@rubbusa.com

Mr. Doug Larsen Intrepid Technologies 501 West Broadway Street Idaho Falls, ID 83402

Dear Mr. Larsen,

Thank you for your continued interest in our products. I have enclosed some pictures of our liftable THA shelters which I hope will be relevant to your present needs.

If there is any other way I can be of help. You can reach me at (800) 289-7822

Assuring you of our best attention to quality and service at all times.

Sincerely Rubb, Inc.

Bob Normandeau

Bulk Facility Sales

April 24, 2003

RUBB, INC.

P.O. Box 711, 1 Rubb Lane Sanford, Maine 04073 USA

Tel: 207 324 2877 Fax: 207 324 2347

E-mail: info@rubbusa.com

Mr. Doug Larsen Intrepid Engineering Services, Inc. 501 West Broadway Street Idaho Falls, ID 83402

0234-03 JWD

Dear Doug,

Thanks for your continued interest in Rubb Buildings. Per our conversation, please find enclosed pricing on a new THA Range Shelter that you requested.

(1) 40' x 70' THA Range Rubb Shelter with an 11' sidewall:

\$21,000

This price includes a complete galvanized steel structure manufactured and ready for erection by using sleeve joints and a PVC folding door in one gable. As standard, the Rubb shelter is supplied with vents in the gables. The walls are covered with colored and the roof with white translucent high strength, PVC coated polyester fabric. The material is flame retardant. Secure fastening to the ground and erection is customer's responsibility.

(1) Set of Lifting Eyes and Cables:	,	\$	800
(1) Foundation Ballast:		\$	500
Estimated Shipping Cost:		<u>\$ 3</u>	400
Total Price:		\$25	,700

The THA shelter comes standard with a continuous 3.5" x 3.5" galvanized base angle foundation. This can be affixed to either prepared or natural ground surfaces with a variety of fastening methods.

Cost to provide a Rubb factory trained technician to assist your crew is \$500 per day. Cost includes room and board, and assumes up to a ten hour day. Cost does not include transportation. Airfare and car rental are billed at cost plus 10% or mileage is billed at \$0.36 per mile. Travel days and downtime requiring our personnel to be at your location but not working are billed at \$250 per day.

> RUBB BUILDINGS LTD. Tel: +44 191 482 2211 Fax: +44 191 482 2516

Mr. Doug Larsen April 24, 2003 Page 2

All prices are based on U.S. Dollars, FOB Sanford, Maine, and are good for 60 days. Our prices do not include freight cost, sales tax, technical services, building permissions, foundation or erection unless otherwise specified. All sales are subject to Rubb, Inc.'s General Terms and Conditions.

Our standard terms of payment for a purchase are: 40% due with order, 50% upon delivery and 10% due net 30 days with a 1% discount if paid within 10 days.

I hope the above meets with your approval and look forward to hearing from you. If any further information is required, please don't hesitate to give me a call at your convenience.

Assuring you of our best attention to quality and service at all times.

Best Regards Rubb, Inc.

Foliat Hour andlan Bob Normandeau Bulk Facility Sales

THA SHELTER GENERAL SPECIFICATION

1.0 Description - General

The THA shelter consists of a series of galvanized steel sections which pin together to form the structural framework, over this framework is tensioned a high strength PVC coated polyester fabric. The shelter comes standard with a continuous galvanized base angle to provide a complete weather seal. The structure is rectangular in shape with vertical gable walls and sidewalls inclined at a 5 ° slope. This shape offers maximum usable space per covered square foot.

1.1 Weight (lbs)

The THA has a finished weight according to the following table:

	<u>19.7' Span</u>	26.2' Span	32.8' Span	39.4' Span
20' length	2420	3630	4140	4990
30' length	3040	4340	5095	6140
40' length	3660	5050	6050	7290
each add'l 10' module	620	710	955	1150

• 1.2 <u>Dimension (ft)</u>

The structure sidewall heights, exterior peak heights and interior peak heights are given below:

	19.7' Span	26.2' Span	32.8' Span	39.4' Span	
Length (outside)	(Stated ler	ngth + 3" i.e. t	80' = 80'3")		
Width (outside)	(Stated wid	(Stated width + 2" i.e. 19.7' = 19.9')			
Sidewall height	11.0'	11.0'	11.0'	1 1.0'	
Exterior peak height	15.7'	17.5'	19.2'	21.0'	
Interior peak height	14.9'	14.2'	15.9'	17.7'	

1.3 Material

1.3.1 Steel

The steelwork is composed primarily of 3" and 3-1/2" diameter round steel tubing. Most tubing is purchased to ASTM A500B specification with a minimum yield strength of not less than 50,000 pounds. The steelwork is either pre-galvanized or hot dip galvanized after fabrication to provide corrosion protection.

Primary Member Sizes Table

	<u>Diameter</u>	Thickness	Min. Yield	Coating
Leg, Roof and Gable Tubes	3.0"	.120"	50,000 lbs.	Pre-galvanized or Hot dip galvanized
Joint Tubes (elbows)	3.5"	.180"	42,000 lbs.	Hot dip galvanized
Axial Tubes	2-3/8"	.120"	50,000 lbs.	Pre-galvanized
Mid-span Bracin	ng 1.9"	.109"	42,000 lbs	Pre-galvanized
Secondary Spar Bracing	1.25"	.095	50,000 lbs	Hot dip galvanized
Plate and Angle Fabrications	-	-	36,000 lbs	Hot dip galvanized
Fastening Clevis Pins	5/8"	· •	-	Zinc plated

1.3.2 Fabric

The fabric is a 21 oz. PVC coated polyester. The fabric has a thickness of 28 mils, a tensile strength of 285 pounds/inch, and a tear resistant strength of 154 pounds. The fabric is treated with chemicals to resist degradation by ultraviolet light and also to be flame retardant and is self-extinguishing in accordance with NFPA701 and applicable Federal Standard. The roof is usually a white translucent and the walls are of various opaque colors.

1.3.3 Hardware

The primary structural members pin together using a combination of clevis pins and spring loaded pins at apex location. These pins are high strength and plated to resist corrosion.

1.4 Structural Capability

The THA shelter has been destruction tested and proven to withstand live loadings given in the table below. If loads provided here are insufficient, Rubb can provide modified designs to achieve required load capabilities. Rubb has designed structures to ground snowloads of over 50 psf and windloads in excess of 120 mph.

THA Load Capability

	19.7' Span	26.2' Span	32.8' Span	39.4' Span
Load capacity	22	19	9	11

The THA shelters have been tested applying a uniform loading to a single truss. The values shown represent tests resulting in lb/sq. ft. with a safety factor of 25%. Higher loadings can be achieved with modified truss bracing or reduced spacing between trusses.

1.5 Anchoring

Several anchoring methods are available. One common method is to use galvanized steel anchor bars driven at opposing angles as shown in figure 6 of the accompanying THA shelter brochure. Another is to use anchor bolts into concrete. Alternative methods are available.

1.6 Doors and Ventilation

The structure comes standard with a lace-up door in one gable. Each gable is equipped with a ventilation duct. Exhaust fans or alternative door systems can be added if desired.

2.0 <u>Manufacturer</u>

The manufacturer shall be Rubb Inc. of Sanford, Maine USA. Rubb can provide a supervisor crew to assist in the installation of the structure. The structure shall include all necessary accessories, fasteners, anchors, and special tools as required by Rubb for erection. Estimated erection time for the structure is 40 square feet per person hour.

Rubb buildings are warranted against all defects in material and workmanship for a period of one year from date of delivery. Rubb further guarantees that the fabric membrane will be free from any deterioration in usefulness for a period of five years. If any such defects should occur, Rubb will repair these defects at no charge to the

purchaser. Rubb will not be liable for defects which result from unforeseen acts of God; acts of war; or the negligence of the purchaser, his agents or a third party.

RUBB, INC.
P.O Box 711, 1 Rubb Lane
Sanford, Maine 04073 USA
Tel: 207 324 2877
Fax: 207 324 2347
Toll Free: 800 289 7822
E-mail: bnormandeau@rubbusa.com

Bob Normandeau

April 22, 2003

RUBB, INC.

P.O. Box 711, 1 Rubb Lane Sanford, Maine 04073 USA Tel: 207 324 2877

Fax: 207 324 2877
Fax: 207 324 2347
E-mail: info@rubbusa.com

0228-03 JWD

Mr. Doug Larsen
Intrepid Engineering Services, Inc.
501 West Broadway Street
Idaho Falls, ID 83402

Dear Doug,

It was a pleasure speaking to you on the phone yesterday. Please find enclosed budgetary pricing information for the shelter we spoke about to cover your underground storage tank.

(1) Used 39.4' x 70' THA Range Rubb Shelter with an 11' sidewall:

\$15,555

This price includes a complete galvanized steel structure manufactured and ready for erection by using sleeve joints and a PVC folding door in one gable. As standard, the Rubb shelter is supplied with vents in the gables. The walls are covered with colored and the roof with white translucent high strength, PVC coated polyester fabric. The material is flame retardant. Secure fastening to the ground and erection is customer's responsibility.

(2) 12' x 12' Framed Openings:	included
(1) Set of Lifting Eyes and Cables:	\$ 800
(1) Foundation Ballast:	\$ 500
Estimated Shipping Cost:	\$ 3.400
Total Cost:	\$20,255

The THA shelter comes standard with a continuous 3.5" x 3.5" galvanized base angle foundation. This can be affixed to either prepared or natural ground surfaces with a variety of fastening methods.

Cost to provide a Rubb factory trained technician to assist your crew is \$500 per day. Cost includes room and board, and assumes up to a ten hour day. Cost does not include transportation. Airfare and car rental are billed at cost plus 10% or mileage is billed at \$0.36 per mile. Travel days and downtime requiring our personnel to be at your location but not working are billed at \$250 per day.

Mr. Doug Larsen April 22, 2003 Page 2

All prices are based on U.S. Dollars, FOB Sanford, Maine, and are good for 60 days. Our prices do not include freight cost, sales tax, technical services, building permissions, foundation or erection unless otherwise specified. All sales are subject to Rubb, Inc.'s General Terms and Conditions.

Our standard terms of payment for a purchase are: 40% due with order, 50% upon delivery and 10% due net 30 days with a 1% discount if paid within 10 days.

The THA snelter has been created to serve as a heavy duty, all purpose shelter. Though not designed to the strict code standard of our building ranges, the THA shelters have been destruction tested at our factory to ensure their reliability in the field. The THA's primary advantages are as follows:

- 1. Low initial and lifetime costs
- 2. Can be erected or dismantled with minimal tools
- 3. Can be erected on almost any surface
- 4. Packs to a small shipping volume
- 5. High degree of part interchangeability

For many storage and site workshop situations, the THA provides the optimal solution to the need for durable cover and planning flexibility.

I hope the above meets with your approval and look forward to hearing from you. If any further information is required, please don't hesitate to give me a call at your convenience.

Assuring you of our best attention to quality and service at all times.

Sincerely Rubb. Inc.

Bob Normandeau Bulk Facility Sales

GENERAL TECHNICAL SPECIFICATIONS FORRUBBBUILDINGSANDSHELTERS(GTS)4/01

1.0 RUBB BUILDINGS LTD

Rubb Buildings Ltd has for over 30 years manufactured versafile, relocatable buildings for all types of applications throughout the world. Our buildings withstand climatic conditions tanging from the tropical to the Arctic. From the outset Rubb Buildings has maintained a strict quality policy encompassing design, materials, and the manufacturing process. We feel we can therefore say with contidence that, "We make relocatable buildings build to tast".

2.0 SERVICES

Our service does not end with the product itself. If required, we can handle any project on a "turn-key" basis.
We can provide all of the following services.

- Site surveys.
- Design of virtually any shape of building required.
- Design of foundations and floors.
- Applications for building regulation approval.
- Manufacture of buildings and shellers.
- Construction of foundations and floors.
- Electrical, heating, lighting, ventilation, dehumidification, air conditioning services etc.
- Transport.
- Erection.
- After sales service.

3.0 DESIGN CRITERIA FOR BUILDINGS

Ruth buildings are available in accordance with UK Building Codes with respect to wind and snow loads. They are designed in strict accordance with the following British standards and codes of practice:

8S 548: Schedule of weights of building materials BS 4360: Weldable structural steels

BS 4849: Hot rolled structural steel sections
BS 5950: Structural use of steelwork in building.
BS EN 10219: Cold formed welded structural sections.

BS 6399: Part 1 - Code of practice for dead and imposed loads. BS 6399: Part 3 - Code of practice for imposed roof loads.

CP3 Chapter V Basic data for the design of buildings, Parl 2: Chapter V, loadings Part 2 - wind loads.

Rubb standard buildings are designed for a basic wind speed of 46m/sec (103mph), a 15 year category 3 exposure, and a basic snow load of 75kg/m². Most Rubb building ranges are also available to US BOCA code based on 35psi snow load and 90mph wind load. The buildings can be designed to a higher wind load (e.g. 120 mph) for customised projects. Higher snow load capacity can be achieved by reducing the modular distance between trusses.

4.0 MATERIALS

4.1 The steel structure: The hot-dipped galvanised steel structure of a Rubb building generally takes the form of a series of lattice tubular or box section steel frames at 3 to 5 metre centres. Tubular purins span between each of the trames and provide the necessary support for the cladding. Each frame is composed of smaller more manageable. ——sections, which bott together on site. Buildings spanning up to 80m are available in any length. The hot-dip galvanised coating of all steetwork offers excellent corrosion protection with an estimated life in excess of 30 years. The high quality linish provides excellent resistance to transportation and erection damage.

4.2 The cladding: All buildings are clad with tough PVC impregnated polyester labric. The sheets are sectioned in accordance with the length of the building and joined with special overlap joints. These joints are waterproof and able to withstand vibrations caused by high winds. The membrane is tensioned over the steel structure and anchored to the foundations. The quality fabric has a life expectancy of up to 25 years depending on emironmental conditions. Moreover, due to ease of erection and attachment, the cladding can be replaced easily.

4.2.1 Fabric quality: Flubb buildings eracted over 20 years ago still have their original cladding. The labric has been tested with respect to tensile strength, elongation, tearing strength bursting strength, coaling adhesion and resistance to flexing according to BS 3424. The labric is flame retardant and self-extinguishing to BS 5438 Test 2B (test certificates are available on request).

Rubb Quality 453 and 480 PVC impregnated Polyester Fabric.

-	, .	
	453	480
Fabric:	Polyester	Polyester
Construction:	9 x 9/cm² - plain	12 x 12/cm² - 2/2
Diex:	Weave 1100/1100	Panama 1100/1100
Total Weight:	Approx. 700g/m²	Approx. 800g/m²
Thickness:	Approx. 0.7mm	Approx. 0.8mm
Tensile Strength:	2200/2200/N/5cm	3000/3000/N/5cm
Tear Strength:	450/450N (Tongue Tear)	1000/800N (Tongue Tear)
Fire characteristics:	Self-extinguishing	Self-extinguishing
	Flame retardant	Flame retardant

4.2.2. Fabric options: Colours

Virtually any colour is available on request, but our standard stock colours are:

- White translucent (usually used for roof sections for maximum
 - natura: caylight transmission) Blue

 Dark Brown (off white inside) Nato
 - Nato Green (off white inside)

JV stabilised

For hot, tropical climates we can offer fabric as above which is UV stabilised using an extra coating containing Titanium Dioxide pigment. Camoutlable / infra-red reflective

Membranes of PVC coated polyester fabric with external camouflage colouring and infra-red reflective material can be supplied.

NBC resistant

The structure can be supplied with an inner skin of polyethylene or polypropylene which can meet requirements of nuclear, bacteriological and chemical containment.

5.0 FOUNDATIONS

The preparation of a site for a Rubb building is usually the customer's responsibility. This would include site clearance and construction of the foundations. However, as previously mentioned, Rubb can act as the main contractor on any project.

Foundation requirements vary considerably depending upon the building size, intended period of exposure and on ground conditions. The smaller buildings may be fitted to a timber frame or a steel channel which can be botted to a suitable existing concrete slab or anchored by ground anchors or other alternatives. The larger buildings can be botted to a purpose made concrete ring beam or fitted to a steel beam which could be botted to a suitable existing reinforced concrete slab.

The main frame of the building is designed for "binned" base conditions. This results in relatively simple foundations, there being only nominal moments applied to the base. The buildings can be erected on an uneven surface or a stoping area and will accept high differential settlement of the foundations.

For a permanent soution, most customers provide a concrete stab with ring beam on which to secure the building. A concrete upstand can be either monolithic with foundation beams, or cast on top of an existing stab. Composite action in the latter case may be achieved by driffing the existing stab and grouting in reinforcing bare around which the concrete forming the new upstand can be poured.

5.1 Buildings on wheels: Rubb buildings can be fitted with wheels using a continuous steel foundation. The larger structures are fitted with wheels and run on rails. Smaller shelters can be fitted with rubber lyred wheels.

continued

5.2 Lifting a building: When a building is to be lifted, a continuous stee foundation along the length of the structure is essential. This can be an angle or U-channel for small units or I-beams for larger structures. Buildings can be lifted using the correct sling arrangement and lifting beam. Normally, 4 modules can be lifted using a 6 legged sling without the need for a lifting beam.

6.0 DOORS

Rubb buildings can be fitted with any door arrangement, Large doors are preferably located in the gable ends. Doors up to 4.6m width (depending on building configuration) can be fitted in the side of a building as standard. For customised projects larger doors in the side are possible (see brochure).

Our standard doors are as follows:

- Access door (standard 0.8m wide x 2.0m high)
- Roller shutter doors (up to 7.0m wide x 5.0m high)
- PVC loiding doors (up to 5.5m wide x 4.4m high)
- Sliding aircraft doors (up to 20m wide x 6.0m high)
- Folding aircraft doors (up to 18m wide x 7.0m high)

We can however; supply any door configuration required, building size permitting. We have supplied doors over 70m wide and up to 12m high.

7.0 ELECTRICS AND LIGHTING

The white translucent roof provides a good level of natural light during day-light hours. However, we can design and install complete lighting and electrical requirements to suit the activity within the building. All types and standards of light littings and installations are available ranging from the Fluorescent Batten, Hi-bay or Lo-bay type to the special purpose flame-proof and water-proof littings. Our buildings can also be installed with emergency lighting to BS 5256 and Fire Alarms to BS 5839. The complete installation will be carried out in strict accordance with the current I.E.E. Regulations. Kit form lighting can be provided for connecting to generators. All fittings can be attached to, or suspended from the building structure. Savings on lighting costs due to the translucent roof membrane are substantial.

8.0 DOUBLE SKIN INSULATION

Heat loss can be reduced in our buildings by the provision of an inner skin attached to the inner shucture. By adding an insulating material between the two skins, it can be made to comply to the latest British Standards Building Regulations. Various types of insulating material which can be used to suit individual requirements / preferences include, standard glass fibre and Rockwool.

9.0 VENTILATION

Ventitation is required to:

- Avoid condensation
- Maintain air quality
- Avoid unpleasant heat exposure

As standard, the Rubb building is supplied with vent openings in the gables to allow some natural ventilation. Other openings can be positioned in the side walls to provide a higher level of natural ventilation. These openings can be fitted with ventilation tans to provide the recommended number of air changes per hour, to suit the activity within the building. Special ventilation i.e. paint spray, tumes, soot and exhaust extraction can also be accommodated within our services.

10.0 HEATING

As part of the service we also undertake a comprehensive heating installation designed to comply with individual requirements and locations. We can utilise existing sources on site, i.e. gas, steam, LPG, oil, electric etc. We can also undertake the supply and installation of oil storage tanks. Heating units including the re-circulation type can be located either inside or outside the building and supplied with various types of ductwork to provide the correct environmental conditions for the activity within the building.

Where air movement is not considered desirable - e.g. Sports Halls, radiant systems utilising gas or electricity can be installed.

11.0 DEHUMIDIFICATION

It is commonly held that a store must be heated to prevent moisture problems. This is not the case and savings of up to 75% can be made using dehumidification as compared to heating. Due to the fact that Rubb structures are covered in an air tight fabric they are ideal for dehumidified storage. A ground sheet can easily be welded to the side wails to prevent rising damp from any existing floor slab. Rubb can supply complete dehumidified storage systems for use in existing warehouses and other buildings. These may consist of total structures, custom fit bags or drop shrouds.

12.0 AIR CONDITIONING

Air conditioning can be provided for the whole or specific areas within the building to suit the clients requirements. In general, all other pipe services, e.g. compressed air, water, gas or oil can be installed.

13.0 AIRTIGHT AND LIGHT INHIBITING STRUCTURES

Rubb has extensive experience in designing, manufacturing and erecting structures which are required to be virtually airlight and at the same time must inhibit light ingress. Such structures are of particular use in the water treatment sector where air tightness prevents unpleasant odour escape, and algae growth is inhibited by providing light-proof conditions.

14.0 SHELTERS RANGE

Rubb shelters have a similar specification to buildings, but because they are designed for more temporary usage they do not conform to UK Building Regulations for wind and show loads. Rubb manufacture standard shelter kits in the THA, THB and TH ranges as shown in the tables. Any length can be supplied in 3m long modules for all shelter designs. Models THA, THB have vented gable ends which are welded to the first roof section for extra rigidity. All shelters are easy to erect by unskilled labour with no special tool requirements.

A typical kil comprises, steel frame, all fixings, PVC coated 453 polyester fabric, integral steel ringbeam, vent duct, single or double face up or folding door and erection documentation. Framework is holipped galvanised tubular steel. Joint design is mostly spring clip style with lew loose bolls. The labric membrane is self-extinguishing.

15.0 OPTIONAL EQUIPMENT/SERVICES

- 1. Door Alternatives
- a. Rubb PVC folding door (incl. as standard on THA and THB).
- b. Steel roller shutter door.
- c. Lace up doors (incl. as standard on TH).
- d. Personnel doors.
- 2. Foundation Alternatives
- a. Ground anchor kit for virgin land with steel spikes.
- Ballast weight kit (ballast not included).
- c. Expansion bolt kit for fastening to concrete.
- d. Botts for resin anchoring (hard core/asphalt).
- Steel foundation, not dip galvanised (Incl. as standard on THA and THB).
- 3. Kit for lifting
- 4. Ground sheet
- 5. All white fabric tropical quality
- Lighting kit
- 7. Wheel system
- . Clear windows
- 9. Customers' company logo/name on shelter
- 10. Complete erection and supervision
- Ventilation fan
- 12. Ventilation ducts (incl. as standard on THA and THB in each gable)
- 13. Steel clad walls

SEE BACK PAGE FOR SPAN PROFILES OF SHELTERS

16.0 WEIGHTS AND DIMENSIONS standard shellers

TH RANGE

				_
Dimensions(wxl)(m)	3×6	4x6	5 5 x 6	7 \$6
Weightincludingcover(kg)	410	425	446	469
Weightofeach3mext.(kg)	146	155	165	176
Standarddoor opening(wxh)(m)	Single lace-up	2x2	2.5x2	3x2.5

THA RANGE

Dimensions(wxl)(m)	5×5	8x9	10x9	12 x9
Weightincludingcover(kg)	1099	1652	1881	2269
Weightoleach3mext.(kg)	281	321	351	434
Standarddoor opening(wxh)(m)	3.3x3.3	3,5×3.B	1.5x4.1	55x4.4
Volume/inm² perm² flocrarea	3.67	4.17	4.47	4.75
Snowloadingcapacity(kg/m *)	109	95	45	55

THE BANGE

Dimensions(wxl)(m)	7x9	5.75×9	13×9	-
Weightincludingcover(kg)	1451	1757	2205	-
Weightofeach3mext.(kg)	269	325	429	-
Standarddoor opening(wxh)(m)	3.0x2.7	4,5x3.1	6.0x3.5	-
Volume/inm² perm² floorarea	3.11	3.51	3.95	1

17.0 SHIPPING

Rubb buildings and Shelters, being of modular construction can be crated, strapped in bundles suitable for handling by crane or truck, or packed into standard ISO containers for shipping by sea, air, rail or road.

18.0 ERECTION

Rubb buildings and Shelters are designed to be speedily erected with minimum equipment. Buildings can be erected using customers' own labour (we can assist by providing an erection supervisor on an hourly basis), or by a Rubb erection team at a fully inclusive price. Rubb have extensive experience in this field and can offer this service anywhere in the world, improvising with minimum equipment where necessary.

19.0 QUALITY ASSURANCE

Rubb designs, manufactures and erects structures which conform fully with ISO 9001 Quality Assurance standards. Rubb also meet the requirements of Nato and US military codes of conformity. Leading insurance underwriters have, after exhaustive testing, approved Rubb buildings, from a fire safety aspect, for housing £57.5m aircraft.

20.0 STANDARD PROFILES OF RUBB SHELTERS all dimensions in metres

RDS (RAPID DEPLOYMENT SHELTER) RANGE OF SHELTERS

BVR RANGE OF BUILDINGS Special purpose Rapid Erection structures and Sunshades.

FOUNDATION ALTERNATIVES

TH RANGE: With the TH, no foundation frame is included. A loot plate is welded to the bottom of the leg section. This can be bolted to a wood foundation with coach screws or on to a steel channel foundation snown in figs 1, and 2.

THA AND THE RANGE: With these shelters a continuous steel angle foundation is included. Afternative loundation arrangements are shown in figs. 3, 4 and 5.

N.B. Shelters to be lifted or fitted with wheels require a steel foundation frame.

IMPORTANT: The user is responsible for securing the structure to the ground. Depending on ground conditions, anchor hooks may not be sufficient. Any additional anchoring down arrangements to secure the structure are the users responsibility

THA RANGE OF SHELTERS

THB RANGE OF SHELTERS

CVB RANGE OF SHELTERS Designed to be mounted directly on a standard ISO container

CXB RANGE OF SHELTERS

Concretedrying shelters, or playing surfacecovers,up to9m.spans.

TH RANGE OF SHELTERS

1m.extensionlegicallowextraworking heightforwetweatherconcretelaying

In the interests of product development Rubb reserve the right to after specifications without prior notice. The information provide here is for guidance only and does not form any part of contractural offer.

BURBBUILDINGSLTD

Dukesway, TeamValleyTradingEst., Gateshead, Tynes Wear, NE1100EEngland. Tel:01914822211Fax:01914822516 email: into@rubb.co.uk

Made in England, also USA and Norway

